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1. Introduction

The study of gravitational waves as string theory backgrounds began more than

fifteen years ago [1]-[7]. They were proposed as the most convenient starting point

for extending the analysis of the properties of string theory from the familiar vacua

given by the product of flat space and a compact manifold to the less explored curved,

non-compact space-times. The main reason was that already from the point of view

of general relativity the gravitational waves are some of the simplest time-dependent

backgrounds. They admit a covariantly constant null Killing vector, most of their

curvature invariants vanish and there is no particle creation. Another distinctive

feature, which is particularly relevant for string theory, is that it is always possible

to fix the light-cone gauge for the quantization of the world-sheet action. Recently

it was also realized that the gravitational waves play an important role in the study

of gauge/string duality.

Motivated by the notion of Penrose limits [8]-[9], it was argued [11] that such

backgrounds are dual to modified large-N limits of gauge theories. This observation

has opened new avenues in understanding stringy aspects of the gauge theory/string

theory duality. Indeed, the Green-Schwarz action for the pp-wave that is obtained by

the Penrose limit of AdS5×S5, can be quantized in the light-cone gauge, even though

there is a non trivial R-R flux [12, 13]. A lot of progress has been made since, and

this is reviewed in [14]-[17]. It should be noted however that at the moment there is

no generally accepted theory of the full holographic correspondence, although several

proposals have been put forward [18]-[22].

Given the relevance for both the study of string theory in non-compact curved

space-times and the gauge theory/string theory duality, we believe that it is impor-

tant to obtain a clear and detailed understanding of the string dynamics at least in

some particular gravitational wave backgrounds. With this aim in mind, it is natural

that our choice falls upon a class of gravitational waves that are supported by a NS-

NS flux and have an exact CFT description as WZW models. This is the class of the

WZW models based on the Heisenberg groups H2n+2, n ≥ 1. The first example in

this family was discovered by Nappi and Witten [7] and the others were introduced

in [23],[24]. These models, unlike those with the same metric but supported by a R-R

flux, can be quantized in a covariant way using standard perturbative string theory

techniques. The presence of the affine symmetry algebra then imposes additional
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constraints that can lead to the complete solution of the model1. Since the study of

string and brane dynamics in non-compact curved backgrounds is a difficult arena, all

models that can be solved exactly are a source of useful information. Unfortunately,

only very few examples are available and they essentially amount to the Liouville

model [27, 28, 29], to AdS3 [30, 31] and its cosets [32]-[34].

In [35] we added another entry to this list, solving the H4 model, which describes

the propagation of a string in a four-dimensional gravitational wave. The structure

of the closed string spectrum turned out to be very similar to the one established for

AdS3 [31]. It can be organized in highest-weight and spectral-flowed representations

of the affine Ĥ4 algebra and there are two distinct classes of states. For generic

values of the light-cone momentum p, the states belong to the discrete representa-

tions of the Ĥ4 algebra. They correspond to short strings that are confined by the

background fields in closed orbits in the plane transverse to the two light-cone coor-

dinates. Whenever µα ′p ∈ Z, with µ a parameter of the pp-wave metric, the states

belong to the continuous representations of the Ĥ4 algebra and correspond to long

strings that move freely in the transverse plane.

In [35], we computed all the three and four-point correlation functions of primary

vertex operators, thus providing all the structure constants for this non-compact

WZW model. We also showed explicitly that the spectral-flowed representations are

necessary for the consistency of the model since they appear in the intermediate

channel of four-point amplitudes with external highest-weight states. In [36] we per-

formed a similar analysis for the H6 model. This model already displays all the new

features of the higher-dimensional cases, namely the existence of enhanced symme-

try points and the necessity of introducing representations that satisfy a modified

highest-weight condition, which generalize the concept of spectral-flowed representa-

tions. The H6 model is also relevant for the AdS3/CFT2 correspondence, being the

Penrose limit of AdS3 × S3.

As conformal field theories, the H4 model and its higher dimensional versions

deserve attention not only because of the rich and interesting structure we have

just outlined but also because there are several relations between them and other

important models. Most of these relations follow directly from the original idea of

Penrose of considering the gravitational waves as limits of other space-times. From

the point of view of the world-sheet σ-model, the Penrose limit that connects two

backgrounds both having an exact description as WZW models can be interpreted as

a contraction of the underlying current algebra [37]. As such, the H4 model captures

the limiting behavior of backgrounds of the form R × S3 and AdS3 × S1. In [35]

we analyzed the contraction of R × SU(2)k to H4 and in [36] the contraction of

SL(2,R)k × SU(2)k to H6.

The structure of the algebra changes drastically in the contraction process. The

1See [25, 26] for a study of other interesting pp-waves without affine symmetry algebras.
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structure of the space-time is also drastically changing during the Penrose limit.

Despite this, we have shown that it is possible to take the limit of the CFT operators

and of the dynamical quantities such as the correlation functions in a controlled way.

Another interesting relation stems from the free-field realization of the H4 model

introduced in [38, 39]. The H4 primary vertex operators can be represented using

the twist fields of the orbifold obtained as the quotient of the plane by a rotation

and a dictionary can be established connecting the amplitudes computed in the H4

model and the amplitudes computed in the orbifold CFT [35].

In this paper we complete our analysis of the H4 model by studying D-branes

in the Nappi-Witten gravitational wave and the dynamics of their open string exci-

tations. The dynamics of open strings in curved space-time is even less understood

than its closed counterpart and again we have at our disposal a very limited number

of exactly solved examples. What is typically accessible, are the boundary states that

have been studied for the Liouville branes [40, 41], for branes in AdS3 [42, 43, 44]

and for the 2d black hole [45, 46]. For all the other quantities such as the bulk-

boundary and the three-point boundary couplings only partial results exist [44] and

their computation proved to be an extremely difficult task. The only exception is

the Liouville model for which the complete solution is available [40, 41, 47, 48, 49].

In this paper we will provide the complete solution for the BCFT pertaining to the

two classes of symmetric branes of the H4 model.

D-branes in pp-wave backgrounds have already been the object of several studies

and we summarize here only the main results. D-branes in R-R supported pp-waves

have been discussed in the light-cone gauge and various aspects of their physics have

been analyzed [50]-[56]. Interesting world-volume theories have been argued to exist

on such branes [57]. D-branes in NS-NS supported pp-wave have also been studied,

since they are relevant for the Penrose limits of little string theory and, unlike the

RR supported pp-waves, they are amenable to study using boundary CFT methods

[58, 59],[60]-[63]. Our aim in this paper is not to describe the most general brane

configuration in the Nappi-Witten gravitational wave. We focus instead on two

particular classes of branes which preserve half of the background isometries and we

clarify the closed and open string dynamics in full detail.

The H4 model has two families of symmetric D-branes [58, 59], namely D2 and

S1 branes. We solve in both cases the consistency BCFT conditions [75, 76] and

obtain the BCFT data, that is, the bulk-boundary and the three-point boundary

couplings. The bulk-boundary couplings for the D2 branes can be found in Eq.

(5.1.6) and (5.1.8) while the three-point boundary couplings are in Eq. (5.1.11),

(5.1.15), (5.1.21) and (5.1.23). The bulk-boundary couplings for the S1 branes are

in Eq. (5.2.7) while the boundary three-point couplings can be found in Eq. (5.2.22)

(5.2.25) and (5.2.27). To our knowledge, with the notable exception of the Liouville

model [40, 41, 47, 48, 49], this is the first complete tree-level solution of D-brane

dynamics in a curved non-compact background.
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The D2 branes are the twisted symmetric branes of the H4 model. Their world-

volume covers the two light-cone directions and one direction in the transverse plane.

The induced metric is that of a pp-wave in one dimension less and they also carry

a null electromagnetic flux. As such, they provide an interesting example of curved

branes in a curved space-time. The spectrum of open strings starting and ending on

the same brane or stretched between different branes contains all the representations

of the Ĥ4 algebra.

There are many similarities between the D2 branes in H4 and the AdS2 branes

in AdS3. This is not surprising since they can be considered as Penrose limits of

specific branes in AdS3 × S1 or in R × S3. More precisely, if we start from R × S3

they arise from S2 branes with Neumann boundary condition in time while if we

start from AdS3 ×S1 they arise from the AdS2 branes. The relation between the H4

vertex operators and the orbifold twist fields leads in this case to an analogy between

the D2 branes in the Nappi-Witten wave and configurations of intersecting branes in

flat space [64].

The S1 branes are the untwisted symmetric branes of the H4 model. They have

Dirichlet boundary conditions on the two light-cone coordinates and their world

volume covers the transverse plane with an induced flat Euclidean metric. They are

also supported by a world-volume electric field whose magnitude determines their

localization in one of the light-cone coordinates. Having a non-trivial boundary

condition along the real time direction they are examples of S-branes [65]. In fact,

the Penrose limit relates the S1 branes to either S2 branes with a Dirichlet boundary

condition in time in R × S3 or to the H2 branes in AdS3 × S1.

The world-volume of the S1 branes shrinks to a point whenever their light-cone

position is given by µu = 2πn. For these values of the coordinate u, there is another

class of symmetric branes with a cylindrical world-volume. These branes extend

along the light-cone direction v and have a fixed radius in the transverse plane. We

will not discuss them in detail in this paper. We also mention that the S1 branes are

a special case of a more general class of non-symmetric branes that we discuss from

the DBI point of view. Finally, the behavior of the open strings attached to the S1

branes is very similar to the behavior of open strings ending on magnetized branes

in flat space [66].

Our solution of theH4 model with boundary should be useful not only to improve

our understanding of the closed and open string dynamics in curved space-times but

also to clarify some properties of both compact and non-compact WZW models.

Indeed, as it is widely appreciated by now, only when studied in the presence of

a boundary a conformal field theory reveals its full richness. Among other results

we provide the first example of structure constants for twisted symmetric branes

in a WZW model (the D2 branes) and of open four-point functions in a curved

background.

While the physical interpretation of the amplitudes in the presence of the D2
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branes is straightforward, the interpretation of the amplitudes for the S1 branes is

less evident, in particular when they involve open string states stretched between

different S-branes which can be put on shell. They might play the role of boundary

conditions at spatial infinity but at fixed time (specified by the S-brane in question).

In fact thinking of an S-brane as a standard soliton supported by a scalar [65], we

can imagine that they appear because of the special initial state of the scalars. In

this context, the open string insertions can be interpreted as small variations on the

initial data that “creates” the branes. It still remains to be seen whether such a

setup may be realized in a problem with physical interest and whether the S-branes

can be relevant for cosmology.

In this paper, we also discuss the annulus amplitudes. Our results, even though

suggestive, are not conclusive and the relation between the open and the closed string

channel of the annulus certainly deserves further study.

The structure of this paper is the following: In section 2 we review the geometry

of the symmetric branes of the H4 WZW model, first considered in [58, 59]. We also

discuss the relationship between branes in the Nappi-Witten gravitational wave and

branes in AdS3×S1 and R×S3. In section 3 we evaluate the bulk-boundary couplings

using the semi-classical wave functions. In section 4 we discuss the spectrum of the

boundary operators. In section 5 we solve the Cardy-Lewellen constraints [75, 76] and

display the structure constants of the boundary theory. In section 6 we discuss the

four-point amplitudes. In section 7 we analyze the annulus amplitudes and discuss

the contraction of the R × SU(2)k WZW model with boundary. In section 8 we

analyze the physics of the branes in the Nappi-Witten gravitational wave using the

Dirac-Born-Infeld action. Finally in section 9 we suggest some interesting lines of

further research. Several technical details are collected in the appendices.

2. Branes in H4

The Nappi-Witten gravitational wave [7] is a curved homogeneous lorentzian space.

The metric

ds2 = −2dudv − µ2r2

4
du2 + dr2 + r2dϕ2 , (2.1)

solves the Einstein equations with a constant null stress-energy tensor, provided in

our case by the 2-form field-strength

H = µrdr ∧ dϕ ∧ du . (2.2)

The light-cone and the radial coordinates are related to the cartesian ones by u = t+x√
2
,

v = t−x√
2

and reiϕ = χ+ iξ. As given before, the metric is in the so-called Brinkman

form. The change of coordinates

u = x+ , v = x− +
µ

8
(y2

1 + y2
2) sinµx+ , χ = y1 sin

µx+

2
, ξ = y2 sin

µx+

2
,

(2.3)
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gives the metric in Rosen form

ds2 = −2dx+dx−+sin2 µx
+

2
(dy2

1 +dy2
2) , H = µ sin2 µx

+

2
dy1∧dy2∧dx+ . (2.4)

In the following, both Brinkman and Rosen coordinates will be useful. The two-

dimensional σ-model that describes the propagation of a string in this background

is a WZW model based on the Heisenberg group H4 [7]. The commutation relations

are

[P+, P−] = −2iµK , [J, P±] = ∓iµP± , (2.5)

where the generators J and K are anti-hermitian and (P+)† = P−. Even though the

group is not semi-simple, there is a non-degenerate invariant symmetric form given

by

2〈J,K〉 = 〈P+, P−〉 , (2.6)

which can be used to express the stress-energy tensor as a bilinear in the currents.

For a detailed discussion of this model we refer the reader to [35].

Since this gravitational wave is a WZW model, we can study in considerable

detail the symmetric branes, that is the branes that preserve a linear combination

of the left and right affine algebras. The symmetric branes fall in families which are

in one-to-one correspondence with the automorphisms of the current algebra. Given

such an automorphism Λ, the relevant boundary CFT is defined by the following

boundary conditions on the affine currents

[

Ja(z) − Λ
(

J̄a(z̄)
)]

|z=z̄ = 0 . (2.7)

Equivalently we can introduce for each symmetric brane a boundary state |B〉〉 that

satisfies
[

Jam + Λ(J̄a−m)
]

|B〉〉 = 0 . (2.8)

The geometry of the symmetric branes in a group manifold has a simple and elegant

description. Their world-volume coincides with the (twisted) conjugacy classes [67,

68]

C Λ
g = {ΛG(h−1)gh , ∀h ∈ G} , (2.9)

where ΛG is the group automorphism induced by Λ. A generic automorphism can

be written as the composition of the adjoint action of a group element g0 and of an

outer automorphism Ω

Λ = Ω ◦ Adg0 . (2.10)

Since two families of branes that differ only in the choice of the inner automorphism

Adg0 are related by the left action of the group, we can set without loss of generality

g0 = 1 and restrict our attention to families of branes associated with distinct outer
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automorphisms Ω. The H4 algebra admits a non-trivial outer automorphism Ω which

acts on the currents as charge conjugation

Ω(P±) = P∓ , Ω(J) = −J , Ω(K) = −K . (2.11)

As such, we have two families of symmetric branes, wrapped on the conjugacy classes

Cg and on the twisted conjugacy classes C Ω
g respectively. In the following, we will

briefly review their geometry which was first discussed in [58, 59].

The H4 conjugacy classes Cg(u, η) are characterized by two parameters, the

constant value of the coordinate u and the constant value of the invariant

η = v − µr2

4
cot

µu

2
. (2.12)

Their geometric description is particularly simple in Rosen coordinates where the

brane world-volume coincides with the wave-fronts since x− = η. These branes are

thus Euclidean two-planes with an x+-dependent scale factor and a two-form field-

strength

F12 ≡ B12 + 2πα
′
F12 = −sin µx+

2
. (2.13)

As usual, F is the gauge invariant combination that appears in the Dirac-Born-

Infeld action. These branes have a non-trivial boundary condition on the real time

coordinate and can be called, following the modern terminology, S1-branes [65]. As

we will show at the end of this section, they are related by the Penrose limit to the

H2 branes in AdS3 × S1 or to the S2 branes in R × S3 with a Dirichlet boundary

condition along the time direction.

The brane world-volume degenerates to a point whenever µx+ = 2πn, n ∈ Z.

Indeed if we start from µx+ = 2πn and change the value of x+ until we reach

µx+ = π+2πn, we interpolate between a point-like world-volume and a flat, infinite

two-dimensional world-volume. This is very similar to what happens in flat space

when we turn on a magnetic field on a brane and send its field-strength to infinity. As

we will show in more detail later, there are several analogies between the untwisted

symmetric branes of the H4 model and branes in flat space with a magnetic field on

the world-volume. In particular, the open strings stretched between two S1 branes

behave very similarly to the open strings in a magnetic field [66].

In Brinkman coordinates, the metric induced on the two-dimensional world-

volume is trivial and the flux is

Frϕ = Brϕ + 2πα
′
Frϕ = −r cot

µu

2
. (2.14)

When 2πn < µu < π + 2πn we can parameterize the world-volume with (r, ϕ)

and consider the brane as a point-like object which appears at the point (u, v =

η, r = 0) and then moves away along the x axis at the velocity of the light while

8



simultaneously expanding in a circle in the transverse plane according to Eq. (2.12).

When π + 2πn < µu < 2πn we have the time-reversed process, where an infinite

circle coming from spatial infinity in the transverse plane shrinks to a point. Finally

when µu = π + 2πn the brane is a two-plane with a fixed light-cone position also in

Brinkman coordinates.

When µu = 2πn, the geometry of the conjugacy classes changes. In Rosen co-

ordinates we notice that the two-dimensional planes degenerate to points. However,

the transformation (2.3) is singular when µu = 2πn. Indeed, the analysis of the

conjugacy classes shows that there are other possibilities for the symmetric branes

at µu = 2πn: when r = 0 we have points with a fixed value of v and when r 6= 0 we

have a cylinder of radius r extended along the null direction v. The geometry of the

conjugacy classes is summarized in the following table

u 6= 2πn η S1 branes

u = 2πn v, r = 0 S(-1) branes

u = 2πn r 6= 0 null branes

In this paper we will often denote the two parameters that identify an S1 branes

with a single letter a ≡ (ua, ηa). It would be interesting to identify all these branes

as bound states of some set of elementary branes. For instance, the D2 branes in S3

were shown to arise as bound states of D0 branes [69]. In a similar spirit and with

similar techniques we could choose as fundamental branes the point-like branes, that

is the degenerate conjugacy classes for µu = 2πn and try to identify the S1 branes

and the cylindrical branes as bound states of them.

The second class of symmetric branes we are interested in, wrap the twisted

conjugacy classes CΩ
g (χ) which are parameterized by a single invariant

χ = r cosϕ . (2.15)

In Brinkman coordinates, they have a simple description as D2 branes whose world-

volume extends along the (u, v, ξ) directions and is localized in the χ direction. They

have a non-trivial induced metric, which describes a gravitational wave, and a null

world-volume flux Fuξ = µχ
2

. The D2 branes of the H4 model thus provide an

interesting example of curved branes in a curved space-time.

The Nappi-Witten gravitational wave is the Penrose limit of two simple and

interesting space-times, R × S3 and AdS3 × S1. For both space-times there is an

exact CFT description in terms of WZW models based respectively on R × SU(2)k
and SL(2,R)k × U(1), where the level k is related to the radius of curvature. From

the CFT point of view, the existence of the Penrose limit relating the Nappi-Witten

wave and R × S3 or AdS3 × S1 corresponds to the fact that the H4 current algebra

is a contraction of the current algebras underlying the two original space-times [37].

We close this section by discussing the relation implied by the Penrose limit

between the symmetric branes of the H4 WZW model and the symmetric branes
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in R × SU(2)k and in SL(2,R)k × U(1). The latter branes have been studied in

[67, 68, 70, 71]. In the first case, we will see that the S1 branes arise from the S2

branes in S3 with a Dirichlet boundary condition in the time direction and that the

D2 branes arise from rotated S2 branes in S3 with a Neumann boundary condition

in the time direction. In the second case, we will identify the D2 branes as the limit

of the AdS2 branes in AdS3 with a Neumann boundary condition in S1 and the S1

branes as the limit of the H2 branes in AdS3 with a Dirichlet boundary condition in

S1. A similar discussion of the Penrose limit applied simultaneously to the space-time

and to a brane contained in it can be found in [72].

We start with R × S3. Using the following standard parametrization for the

SU(2) group manifold

g(α, β, γ) =

(

cos γeiα i sin γe−iβ

i sin γeiβ cos γe−iα

)

, (2.16)

the metric and the two-form field-strength read

ds2 = k
[

−dt2 + cos2 γdα2 + dγ2 + sin2 γdβ2
]

, Hαβγ = −k sin 2γ. (2.17)

Along the time direction we can impose either Neumann or Dirichlet boundary con-

ditions. As for the symmetric branes in S3, they wrap the SU(2) conjugacy classes

which are two-spheres characterized by a constant value of tr(g) = 2 cos γ cosα.

Since SU(2) does not have any external automorphism, the other possible symmet-

ric branes are two-spheres shifted by the action of a group element R(α̃, β̃, γ̃) ∈ SU(2)

and characterized by a constant value of tr(Rg). In order to take the Penrose limit

we first perform the change of variables

α =
µu

2
− 2v

µk
, t =

µu

2
, γ =

r√
k
, β = ϕ , (2.18)

and then send k → ∞. In the limit

cos γ cosα ∼ cos
µu

2
+

2η

k
sin

µu

2
. (2.19)

We observe that an S2 brane with a Dirichlet boundary condition along the time

direction becomes an S1 brane labeled by the parameters u and η. Note that we

have obtained the untwisted H4 branes starting from branes whose world-volume

does not contain the null geodesic used to define the Penrose limit. It is then natural

to consider the limit of branes whose world-volume contains the null geodesic. For

this purpose, we consider a family of S2 branes rotated by R(0, 0, π/2) and with a

Neumann boundary condition along the time direction. In the limit, the parameter

that characterizes the new family of branes behaves as follows

sin γ cos β ∼ r√
k

cosϕ , (2.20)
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and they become the D2 branes of the H4 model. We can proceed in a similar

way for the Penrose limit of AdS3 × S1 and of its symmetric branes. We write the

background in global coordinates

ds2 = k
[

− cosh2 ρdτ 2 + dρ2 + sinh2 ρdϕ2
]

+ kdx2 , Hρϕτ = k sinh 2ρ , (2.21)

and define the Penrose limit introducing

τ =
µu

2
+

2v

µk
, x =

µu

2
, ρ =

r√
k
, (2.22)

and then sending k to infinity. The conjugacy classes are characterized by a constant

value of cosh ρ cos τ . In the limit

cosh ρ cos τ ∼ cos
µu

2
− 2η

k
sin

µu

2
. (2.23)

We observe that an untwisted symmetric brane of AdS3 with a Dirichlet boundary

condition in the S1 factor gives rise to an S1 brane in H4. Note that for large k,

the classes we are considering are precisely those with | cosh ρ cos τ | ≤ 1. This is

precisely the H2 branes and the degenerate branes in AdS3 [71]. The null geodesic

used in the limit is not contained in the brane world-volume. On the other hand,

the twisted conjugacy class with a Neumann boundary condition in the S1 factor,

are characterized by a constant value of sinh ρ cosϕ and contains the null geodesic.

Since in the limit

sinh ρ cosϕ ∼ r√
k

cosϕ , (2.24)

we observe that the D2 branes of the H4 model are the Penrose limit of the AdS2

branes.

A more detailed description of the Penrose limit for the different types of branes,

using coordinate systems adapted to their world-volumes, can be found in Appendix

E. In section 7 we will extend the analysis performed in [35] and discuss the con-

traction of the boundary R×SU(2)k WZW model which is the world-sheet analogue

of the Penrose limit applied simultaneously to the space-time and to the brane con-

tained in it.

3. Review of the bulk spectrum and semiclassical analysis

The structure of the Hilbert space of the H4 WZW model [35] is very similar to

the structure of the Hilbert space of the SL(2,R)k WZW model, clarified by Mal-

dacena and Ooguri [31]. Together with the standard highest-weight representations

of the affine algebra, restricted by a unitarity constraint, there are other representa-

tions that satisfy a modified highest-weight condition. These new representations are

related to the standard ones by the operation of spectral flow, which is an automor-

phism of the current algebra. In our case there are three classes of highest-weight

11



affine representations, reviewed in appendix A. To each affine representations we

associate a primary chiral vertex operator

Φ±
±p,̂(z, x) , 0 < µp < 1 , ̂ ∈ R ,

Φ0
s,̂(z, x) , s > 0 , ̂ ∈ [−µ/2, µ/2) . (3.1)

For the Φ±
±p,̂ vertex operators, p is the eigenvalue of K and ̂ the highest (lowest)

eigenvalue of J . For the Φ0
s,̂ vertex operators, s is related to the Casimir of the

representation and ̂ is the fractional part of the eigenvalues of J . Here z is a

coordinate on the world-sheet and x a charge variable we introduced to keep track of

the infinite number of components of the H4 representations. On the charge variables

the H4 algebra is realized in terms of the operators

P± =
√

2µpx , P∓ =
√

2∂x , J = i(̂± µx∂x) , K = ±ip , (3.2)

when considering its action on Φ±
±p,̂ and by the operators

P+ = sx , P− =
s

x
, J = i(̂+ µx∂x) , K = 0 , (3.3)

when considering its action on Φ0
s,̂. States with µp = µp̂ + w with 0 < µp̂ < 1 and

w ∈ N fall into spectral-flowed discrete representations Σ±w(Φ±
±µp̂,̂) while states with

µp = w with w ∈ Z fall into spectral-flowed continuous representations Σw(Φ0
s,̂). We

also recall the relation

Σ−1[Φ
+
p,̂] = Φ−

1−p,̂ . (3.4)

We will denote the image under spectral flow of a representation α and the corre-

sponding vertex operators either by Σw[Φα], as we did before, or by the introduction

of a further index Φα;w. Finally the operator content of the bulk theory is given by

the charge conjugation modular invariant. We then have the operators

Φ±
±p,̂(z, z̄|x, x̄) = Φ±

±p,̂(z, x)Φ
∓
∓p,−̂(z̄, x̄) ,

Φ0
s,̂(z, z̄|x, x̄) = Φ0

s,̂(z, x)Φ
0
s,−̂(z̄,−x̄−1) , (3.5)

as well as their images under an equal amount of spectral flow in the left and right

sectors. The currents that generate the affine algebra preserved by the boundary

conditions are given by the combination J + Ω(J̄). A more detailed description of

the representation theory of the affine Ĥ4 algebra can be found for instance in [35].

Before performing the exact CFT analysis we will try to clarify the physics of

the model in a semiclassical approximation. In doing so we will gain some intuition

about the spectrum of the boundary operators and on the form of the bulk-boundary

and the three-point boundary couplings. We use the following parametrization for

the group elements

g = e
u
2
Je

iw̃
2
P−+ iw

2
P+

e
u
2
J+vK , (3.6)

12



where w = reiϕ = χ+ iξ. The isometry generators are K = −K̄ = ∂v and

J = ∂u −
iµ

2
(w∂ − w̃∂̃) , P+ = −e

−iµu
2

2
[4i∂̃ + µw∂v] , P− = −e

iµu
2

2
[4i∂ − µw̃∂v] ,

J̄ = −∂u −
iµ

2
(w∂ − w̃∂̃) , P̄+ =

eiµ
u
2

2
[4i∂̃ − µw∂v] , P̄− =

e−iµ
u
2

2
[4i∂ + µw̃∂v] .

To each vertex operator we can associate a semiclassical wave function. For the

discrete representations they are

Φ+
p,̂ = e

ipv+îu−µp
4
ww̄−i µp√

2
wx̄e

iµu
2 +i µp√

2
w̄xe

iµu
2 −µpxx̄eiµu

,

Φ−
−p,̂ = e

−ipv+îu−µp
4
ww̄+i µp√

2
wxe−

iµu
2 −i µp√

2
w̄x̄e−

iµu
2 −µpxx̄e−iµu

, (3.7)

where p > 0, ̂ ∈ R and x, x̄ are two independent charge variables. The states that

belong to these representations are confined in periodic orbits in the transverse plane,

familiar from the quantum mechanical problem of a charged particle in a magnetic

field. For the continuous representations we have

Φ0
s,̂ = e

iju+ is
2

[

w̄
x̄
e−i

µu
2 +wx̄ei

µu
2

]

∑

n∈Z

(xx̄)n einµu , (3.8)

where s ≥ 0, ̂ ∈ [−µ/2, µ/2) and x = eiα, x̄ = eiᾱ are two independent phases. The

states that belong to the continuous representations can move freely in the transverse

plane: the parameter s is the modulus of the momentum and we can identify γ = α−ᾱ
2

with its phase. These wave functions can be expanded in modes which represent the

different components of the H4 × H4 representations. It is also easy to compute

semiclassical expressions for the bulk two and three-point functions.

We can proceed in a similar way for the states confined on the brane world-

volume. In the case of the D2 branes, according to the boundary conditions (2.7),

the generators of the unbroken background isometries are

K − K̄ = 2∂v , J − J̄ = 2∂u , P± + P̄∓ = e∓iµ
u
2 [±2∂ξ − iµξ∂v] . (3.9)

They satisfy the commutation relation of the Heisenberg algebra and the brane spec-

trum, exactly as the bulk spectrum, can be organized in terms of H4 representations.

We then introduce three types of vertex operators for the open strings that live on a

D2 brane localized in the χ direction

Ψχχ
p,̂ = e

i p
2
v+i ̂

2
u−µp

8
ξ2+ µpξx√

2
e

iµu
2 −µp

2
x2eiµu

, p > 0 , ̂ ∈ R

Ψχχ
−p,̂ = e

−i p
2
v+i ̂

2
u−µp

8
ξ2−µpξx√

2
e−

iµu
2 −µp

2
x2e−iµu

, p > 0 , ̂ ∈ R (3.10)

Ψχχ
s,̂ = ei

̂
2
u+ i

2
ξs

∑

n∈Z

xnein
µu−π

2 , s ∈ R , ̂ ∈
[

−µ
2
,
µ

2

)

.
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The operators that act on the charge variable x are given by (3.2, 3.3). The wave

functions for the discrete representations are easily recognized as the generating

functions for the Hermite polynomials. The open string states, as it was already the

case for the closed string states, are trapped in periodic orbits in the ξ direction of

the brane world-volume unless their light-cone momentum is an integer. Note that

for the boundary operators in the continuous representations s can be an arbitrary

real number.

Semiclassical expressions for the couplings between the bulk and the boundary

operators can now be computed as overlap integrals of the corresponding wave func-

tions on the brane world-volume. As a first example consider the bulk-boundary

coupling 〈Φ±
p,̂1

Ψχχ
∓q,̂2〉. It is easily evaluated as

∫

χ

Φ±
p,̂1

Ψχχ
∓q,̂2 = e−µpx2(x1+x̄1)(x1 − x̄1)

|ν|
√

2π

µp

i|ν|

2|ν||ν|! [µp ]
|ν|
2 e−

µpχ2

4 H|ν|

(

±
√

µp

2
χ

)

,

(3.11)

where
∫

χ

≡
∫

dudvdξdχ
′
δ(χ

′ − χ) , (3.12)

denotes a space-time integral restricted to the brane world-volume. The integral is

non-zero only when q = 2p and |ν| ∈ N where ν = −2̂1 − ̂2. The other possible

bulk-boundary coupling is given by

∫

χ

Φ0
s,̂1Ψ

χχ
t,̂2

= 8π2(x1x̄1)
ν/2

∑

m∈Z

[

x2
2

x1x̄1

]
m
2

[

δ(t+ 2s sin γ)eiχs cos γ + (−1)νδ(t− 2s sin γ)e−iχs cos γ
]

, (3.13)

where xi = eiαi . Since the D2 branes are invariant under translations along the two

light-cone directions, only operators with p = 0 and ̂ = 0, 1/2 couple to their world-

volume. Their one-point functions can be derived from the previous bulk-boundary

coupling upon setting t = 0 and integrating over α2

〈Φ0
s,0〉 = 8π2 cosχs

s
[δ(γ) + δ(γ − π)] ,

〈Φ0
s,1/2〉 = 8π2i

sinχs

sx
[δ(γ) + δ(γ − π)] . (3.14)

The discussion for the S1 branes is very similar. The relevant isometry generators

are K + K̄ = 0 and

J+J̄ = −iµ(w∂−w̃∂̃) , P++P̄+ = −4 sin
µu

2
∂̃ , P−+P̄− = 4 sin

µu

2
∂ . (3.15)

They realize the algebra of the rigid motions of the plane and as a consequence the

open string states that live on an S1 brane labeled by a ≡ (ua, ηa) can only belong
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to the continuous representations of the Heisenberg algebra. The semiclassical wave

functions are

Ψaa
s = e

− s

4 sin
µua
2

(w̄x−w
x )
. (3.16)

The action of the zero-modes of the currents on the charge variable x is always

given by (3.3). As we did for the D2 branes we can now extract the bulk-boundary

couplings from the overlap of the wave functions

∫

ua,ηa

Φ±
p,̂(x1)Ψ

aa
s (x2) =

± 8πi

µp
sin

µua
2

e
±ipηa+i(̂∓µ

2 )ua−µpx1x̄1− s√
2

(

x1

x
±1
2

+x̄1x
±1
2

)

− s2

4µp(1±i cot µua
2 )

. (3.17)

We see that all the discrete representations as well as the identity field have a non-

vanishing one-point function, as expected since the S1 branes brake the translational

invariance in the light-cone directions. When µu = 2πn the geometry of the con-

jugacy classes changes. The Φ± vertex operators have a non-vanishing one-point

function only in the presence of the S(−1) branes, localized at the origin of the

transverse plane and at arbitrary positions in the light-cone directions

〈Φ±
p,̂〉u,v =

8π

µp
e±ipv+îu−µpxx̄ . (3.18)

Translational invariance in the transverse plane being now broken, also all the con-

tinuous representations have a non-vanishing coupling

〈Φ0
s,̂〉 = 2πeîuδ(α+ ᾱ) . (3.19)

If we consider instead the cylindrical branes, extended along the v direction and

with a fixed radius r in the transverse plane, only the Φ0
s,̂ vertex operators have a

non-vanishing coupling

〈Φ0
s,̂〉u,r = eîuJ0(sr)δ(α+ ᾱ) . (3.20)

In the following we will not discuss in detail the cylindrical branes even though it

would be interesting to extend our exact CFT analysis to them as well.

4. Spectrum of the boundary operators

In the previous section we discussed the semiclassical open string spectrum for the

two families of symmetric branes we are studying in this paper. According to the

semiclassical analysis, the states of open strings that live on a D2 brane, form all

possible representations of the Ĥ4 algebra. The states of open strings that live on

an S1 brane, can only belong to the continuous representations. In this section, we
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provide a detailed description of the spectrum of the open strings and extend the

analysis also to the open strings that end on different branes. In close analogy with

the bulk primary vertex operators, we introduce for each representation α of the

affine algebra, a boundary primary vertex operator ψabα (t, x), which depends on the

insertion point on the real axis t and on a charge variable x. The two upper indices

label the two branes on which the open string ends. This is the same as the two

boundary conditions, the vertex operator interpolates between.

Let us start with a D2 brane localized at χ = 0. The space of states H00 contains

in this case all possible representations of the Ĥ4 algebra

Σ±w
[

ψχχ±p,̂
]

, 0 < µp < 1 , ̂ ∈ R , w ∈ N ,

Σw

[

ψχχs,̂
]

, s ∈ R , ̂ ∈ [−µ/2, µ/2) , w ∈ Z . (4.1)

This is very similar to what happens for the AdS2 brane localized at ψ = 0 in AdS3,

where the spectrum is also given by the holomorphic square root of the bulk spectrum

[73]. Similarly to that case, an observation about the spectral flow is in order [73].

Given a solution g(u0, v0, r0e
iϕ0) ∈ H4 of the classical equation of motion, a new

solution can be generated by the action of the spectral flow

Σw[g](u, v, reiϕ) ≡ e
wτ+

µ
Jg(u0, v0, r0e

iϕ0)e
wτ−

µ
J , (4.2)

where τ± = τ ± σ. Therefore

u = u0 +
2w

µ
τ , v = v0 , reiϕ = r0e

i(ϕ0+wσ) . (4.3)

As we can see from (4.3), when χ 6= 0 only the spectral flow by an even integer is a

symmetry of the D2 brane spectrum. Spectral flow by an odd integer maps a string

living on a brane sitting at χ to a string stretched between a brane at χ and a brane

at −χ. As a consequence, we cannot use in the general case the spectral flow by an

odd integer, to generate the complete brane spectrum, as we did in (4.1) for a brane

sitting at the origin. However, using the relation (3.4), it is easy to verify that for the

discrete representations, it is enough to consider the spectral flow by an even integer

in order to obtain all possible values of the light-cone momentum. For instance, a

state carrying a light-cone momentum µp + 2w − 1, belongs to the representation

Σ2w

[

ψχχ−(1−p),̂

]

.

For the continuous representations, the spectral flow by an even integer is not

enough. We have to proceed in a different way [73]. We start with the vertex operator

ψ−χχ
s,̂ and take its image under the spectral flow by an odd integer 2w+1. In this way,

as explained before, we obtain the vertex operator pertaining to a string ending on

the brane at χ and carrying an odd light-cone momentum. This asymmetry between

the even and the odd spectral-flowed continuous representations will be also manifest
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in the annulus amplitude, as we will see in section 7. Summarizing, the spectrum of

a brane localized at χ 6= 0, is given by

Σ2w

[

ψχχ±p,̂
]

, 0 < µp < 1 , ̂ ∈ R , w ∈ Z ,

Σ2w

[

ψχχs,̂
]

, s ∈ R , ̂ ∈ [−µ/2, µ/2) , w ∈ Z ,

Σ2w+1

[

ψ−χχ
s,̂

]

, s ∈ R , ̂ ∈ [−µ/2, µ/2) , w ∈ Z . (4.4)

The same structure of the spectrum holds for the strings ending on two different

branes localized at χ1 and χ2 respectively. The only difference is that the possible

values of the parameter s that label the continuous representations are now con-

strained by 2π2s2 ≥ [χ1 − eiπwχ2]
2. The minimal value of s simply reflects the

tension of the string stretched between the two branes. The fact that the bound

depends on whether the amount of spectral flow is even or odd nicely reflects the

different behavior of the continuous representations under the action of the spectral

flow.

We now turn to the S1 branes. As in the previous section, we use the short-

hand notation a ≡ (ua, ηa) for the boundary labels. The S1 branes are Cardy

branes. Therefore, a relation can be established between the parameters labeling the

conjugacy classes and the quantum numbers of the Ĥ4 representations

µu = ±2π(µp+ w) , 2η = π(2̂± 2p∓ 1) . (4.5)

As usual, 0 < µp < 1 and w ∈ N. We will derive this relation in section 7, both by

studying the annulus amplitudes of the H4 model and by taking the Penrose limit of

the R × SU(2)k WZW model. In close analogy with the D-branes in flat space, the

quantum numbers p and ̂ together with the spectral flow parameter w, are related

to the distance along the u and the v direction respectively. Using the relation (4.5),

we can associate to a brane with labels (ua, ηa) the parameters pa, ̂a and wa. This is

useful because as it is the case for the Cardy branes in a RCFT, the spectrum of open

strings ψab stretched from the brane b to the brane a is encoded in the fusion product

Σ±wb
[Φ±pb,̂b] ⊗ Σ∓wa [Φ∓pa,−̂a] of the two corresponding chiral vertex operators.

As mentioned earlier, the open strings ending on the same brane belong to the

continuous representations of the Ĥ4 algebra. The Hilbert space decomposes as

Haa =

∫ ∞

0

dss V̂s,0;0 , (4.6)

and the corresponding vertex operators are ψaas,0;0. The open strings that end on

two different S1 branes with labels a and b can belong to any of the highest-weight

representations of the Ĥ4 algebra as well as to their images under spectral flow.

The precise representation depends on the distance between the two branes along

the u direction. We introduce the following notation: when pb − pa > 0 we set

17



pb − pa = pab +wab, with 0 < pab < 1 and wab ∈ N. We also define ̂ab = ̂b− ̂a. The

brane spectrum is then given by

Hab =

∞
∑

n=0

V̂pab,̂ab−n;wab , (4.7)

and the vertex operators are ψab
pab,̂ab−n;wab. Similarly when pb−pa < 0 we set pb−pa =

pab + wab with −1 < pab < 0, −wab ∈ N. The brane spectrum is then given by

Hab =
∞

∑

n=0

V̂pab,̂ab+n;wab , (4.8)

and the vertex operators are ψabpab,̂ab+n;wab, n ∈ N. Finally when pb − pa is an integer

we set pb − pa = wab and we have

Hab =

∫ ∞

0

dsV̂s,̂ab;wab . (4.9)

The vertex operators read ψab
s,̂ab;wab. We assume that for our non-compact WZW

model, the space Hab decomposes as expected from the fusion rules. This assumption

will be confirmed by the complete solution of the model that is presented in the next

section.

For the S1 branes, the spectral-flowed representations appear whenever the dis-

tance along the u direction between two branes exceeds 2π
µ

. In fact, the action of the

spectral flow amounts to

Σw[g](u, v, reiϕ) ≡ e
wτ+

µ
Jg(u0, v0, r0e

iϕ0)e−
wτ−

µ
J , (4.10)

that is

u = u0 +
2w

µ
σ , v = v0 , reiϕ = r0e

i(ϕ0−wτ) . (4.11)

Note that in this case, the spectral flow is a symmetry for every integer w and maps

a string stretched between two branes localized at ua and ub to a string stretched

from ua to ub + 2πw. In the following, we will derive most of our results assuming

that all the representations are highest-weight representations of the current algebra.

It is however not difficult to extend our results to amplitudes involving spectral-

flowed states, using the free-field realization [38, 39], as we did for the closed string

amplitudes in [35].

5. Structure constants

A boundary conformal field theory is completely specified by three sets of structure

constants: the couplings between three bulk or three boundary fields and the cou-

plings between one bulk and one boundary field. These structure constants satisfy
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a set of factorization constraints first derived by Cardy and Lewellen [75, 76] (see

also [77, 78, 79]). For the sake of clarity, we will briefly review the sewing con-

straints for a generic CFT and in the next section we will write them explicitly for

the Nappi-Witten model.

For a CFT defined on the upper-half plane, there are two sets of fields. The first

set contains the bulk fields ϕi,̄ı(z, z̄), inserted in the interior of the upper-half plane

and characterized by the quantum numbers (i, ı̄). These quantum numbers specify

the representations of the left and right chiral algebras. The second set contains

the boundary fields ψabi (t), inserted on the boundary, (here the real axis). They are

characterized by two boundary conditions a and b. They are also characterized by

the quantum number i, which labels the representations of the linear combination of

the left and right affine algebras left unbroken by the boundary conditions. There

are three sets of OPEs (we adopt with minor modifications the notation used in [78])

ϕi,̄ı(z1, z̄1)ϕj,̄(z2, z̄2) ∼
∑

k

(z1 − z2)
hk−hi−hj (z̄1 − z̄2)

hk̄−hı̄−h̄C(i,̄ı),(j,̄)
(k,k̄)ϕk,k̄(z2, z̄2) ,

(5.1)

ϕi,̄ı(t+ iy) ∼
∑

j

(2y)hj−hi−hı̄ aBj
(i,̄ı)ψ

aa
j (t) , (5.2)

ψabi (t1)ψ
bc
j (t2) ∼

∑

k

(t1 − t2)
hk−hi−hjCabc,k

ij ψack (t2) , (5.3)

where t1 < t2. Here and in the following, the symbol 1 will always denote the identity

field and 〈1〉a the one-point function of the identity with boundary condition a on

the real axis. Indexes are raised and lowered using

dabij = Caba,1
ij 〈1〉a = Cbab,1

ji 〈1〉b (5.4)

and for consistency we require that Caaa,1
11 = 1. Any correlation function on a Rie-

mann surface with boundaries and with arbitrary insertions of bulk and boundary

operators can be constructed by sewing together the basic amplitudes that corre-

spond to the structure constants displayed in (5.1) − (5.3). The sewing constraints

follow from the requirement that all possible ways of decomposing a given amplitude

into the basic amplitudes lead to the same answer. The resulting constraints in-

volve, besides the structure constants, the fusing matrices Fpq

[

j k

i l

]

and the modular

S matrix. The fusing matrices Fpq

[

j k

i l

]

, by definition, implement the duality trans-

formations of the conformal blocks pertaining to the four-point amplitudes. Our

conventions for the fusing matrices can be found in appendix B.

Sonoda [80] has analyzed the sewing constraints for Riemann surfaces without

boundaries, and proved that the CFT correlation functions are unambiguously de-

fined provided that the four-point functions on the sphere are crossing symmetric

and that the one-point functions on the torus are modular covariant. Cardy and

Lewellen extended these results to Riemann surfaces with boundaries [75, 76]. They
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proved that all the amplitudes are unambiguously defined provided that the struc-

ture constants satisfy four additional constraints. The first constraint is a quadratic

constraint that follows from two different factorization limits of the bulk two-point

function 〈ϕi(z1)ϕj(z2)〉a and reads

aBl
i
aB ľ

j Caaa,1

lľ
=

∑

k

Cij
k aB1

k Fkl

[

ω(̄ı) i

ω(̄) j

]

. (5.5)

Hereľ is the representation conjugate to l, and ω represents the action of an external

automorphism Ω on the representations of the chiral algebra. A non-trivial Ω has to

be taken into account when considering for instance the symmetric branes of a WZW

model. This constraint is a particular case of a more general one that follows from

the factorization of a three-point function with two bulk and one boundary field.

The second constraint follows from two distinct factorization limits (t2 ∼ t3 and

t1 ∼ t2 respectively) of the four-point boundary correlator

〈ψabi (t1)ψ
bc
j (t2)ψ

cd
k (t3)ψ

da
l (t4)〉 , (5.6)

and it reads

Cbcd,n
jk Cabd,ľ

in Cada,1

ľl
=

∑

r

Cabc,ř
ij Ccda,r

kl Caca,1
řr Frn

[

j k

i l

]

. (5.7)

The third constraint, relates the bulk-boundary couplings aBj
i and the boundary

three-point couplings Cabc,k
ij . It follows from the requirement of locality for a bulk

field in a three-point function with two boundary fields

〈ϕi(z)ψabj (t1)ψ
ba
k (t2)〉 . (5.8)

It can be written as follows

bBl
iC

abb,ǩ
jl Caba,1

ǩk
=

∑

r,n

aBr
iC

aba,ř
jk Caaa,1

rř e
iπ

(

2hn−hj−hk−2hi+
hr+hl

2

)

Frn

[

k i

j ω(̄ı)

]

Fnl

[

ω(̄ı) i

j k

]

.

(5.9)

The fourth and last constraint involves the boundary one-point functions on the

cylinder. When the boundary field is the identity, this constraint reduces to the

Cardy constraint which relates the open and the closed string channel of the vacuum

annulus amplitude. We postpone the analysis of this constraint to section 7.

In the following, we will determine the bulk-boundary couplings aBj
i and the

boundary three-point couplings Cabc
ijk for the two classes of symmetric branes of the

H4 WZW model. We will use as an input the structure constants and the fusing

matrices of the model, as computed in [35]. Here, we only recall the two and the

three-point couplings, while the fusing matrices are collected for convenience of the

reader in appendix B. In order to write our formulae in a simple way, we shall leave

in the following the dependence on the world-sheet variables zi and ti understood.
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We will write each bulk amplitude as the product of three terms, two kinematical

parts K and K̄, which contain the dependence on the charge variables of the left and

right chiral algebras, and a dynamical part C. The form of K and K̄ for the two and

the three-point functions is completely fixed by the current algebra Ward identities2.

Another convention we will commonly use is

ν = −
n

∑

i=1

̂i , (5.10)

for an n-point amplitude with primary vertex operators carrying the labels ̂i. The

non-trivial two-point functions are

〈Φ+
p1,̂1

Φ−
p2,̂2

〉 = δ(p1 − p2)δ(̂1 + ̂2)e
−p(x1x2+x̄1+x̄2) , (5.11)

〈Φ0
s1,̂1

Φ0
s2,̂2

〉 =
δ(s1 − s2)

s1
(2π)2δ(α1 − α2)δ(ᾱ1 − ᾱ2) , ν = 0, 1 .

The bulk three-point couplings between three discrete representations are

C(p1,̂1),(p2,̂2)
(p1+p2,̂1+̂2+n) =

1

n!

[

γ(p1 + p2)

γ(p1)γ(p2)

]
1
2
+n

, (5.12)

C(p1,̂1),(−p2,̂2)
(p1−p2,̂1+̂2−n) =

1

n!

[

γ(p1)

γ(p2)γ(p1 − p2)

]
1
2
+n

, p1 > p2 , (5.13)

where γ(x) = Γ(x)/Γ(1 − x). The corresponding kinematical factors are

K(p1,̂1),(p2,̂2),(−p3,̂3) = e−x3(p1x1+p2x2)(x1 − x2)
ν ,

K(p1,̂1),(−p2,̂2),(p3,̂3) = e−x1(p2x2+p3x3)(x2 − x3)
−ν , (5.14)

with similar expressions for K̄. The coupling between one continuous and two discrete

representations is

C(p,̂1),(−p,̂2)
(s,{̂1+̂2}) = e

s2

2
σ(p) , (5.15)

where ψ(x) = d lnΓ(x)
dx

and we defined

σ(p) ≡ ψ(p) + ψ(1 − p) − 2ψ(1) . (5.16)

We also have

K(p,̂1),(−p,̂2),(s,̂3) = e
−px1x2− s√

2

(

x2x3+
x1
x3

)

xν3 . (5.17)

Finally, the coupling between three Φ0 vertex operators simply reflects the conserva-

tion of the momentum in the transverse plane. Therefore it is non-zero only when

s2
3 = s2

1 + s2
2 − 2s1s2 cos θ , s3e

iϕ = s1 − s2e
iθ . (5.18)

2The factor K for the three-point function, is the group-theoretic Clebsch-Gordan coefficient of

the classical algebra H4.
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It can be written as

KK̄C(s1,̂1),(s2,̂2),(s3,̂3) = (2π)4(x1x̄1)
ν δ(α21 + ᾱ21)δ(α31 + ᾱ31)δ(α21 − θ)δ(α31 − ϕ)

π
√

4s2
1s

2
2 − (s2

3 − s2
1 − s2

2)
2

,

(5.19)

where αij = αi − αj and ν ∈ Z.

We have now at our disposal all the information required to solve the H4 WZW

model with boundary. We will consider first the D2 branes and use the sewing

constraints to fix their structure constants. We will then study the S1 branes that,

as we already explained, are the Cardy branes of the model. In this case we compute

the bulk-boundary couplings and verify that, for our non-compact WZW model, the

boundary three-point couplings are also proportional to the fusing matrices. More

details concerning the steps leading to the solution, can be found in appendix D.

5.1 The D2 branes

In this section we compute the structure constants for the maximally symmetric D2

branes of the Nappi-Witten model. From the physical point of view, the couplings

we derive are important since they provide examples of open and closed string in-

teractions in a non-compact, curved space-time. They are also interesting from a

more formal point of view, since they represent the first example of the structure

constants for the twisted symmetric branes of a WZW model. They could be a

useful guide, leading to a general answer, extending the one that already exists for

the Cardy branes. We will first derive the bulk-boundary couplings and then the

boundary three-point couplings for strings ending on the same D2 brane at χ = 0.

Once these couplings are obtained, it is easy to generalize the solution to strings

ending on different branes at arbitrary position in the χ direction.

The boundary two-point functions are

〈ψχ1χ2

p1,̂1
(x1)ψ

χ2χ1

p2,̂2
(x2)〉 = Cχ1χ2χ1,1

(p1,̂1),(p2,̂2)
〈1〉χ1e

−px1x2 ,

〈ψχ1χ2

s1,̂1
(x1)ψ

χ2χ1

s2,̂2
(x2)〉 = Cχ1χ2χ1,1

(s1,̂1),(s2,̂2)
〈1〉χ12πδ(s1 + s2)δ(α2 − α1)x

−̂1−̂2
1 .(5.1.1)

The second two-point function is non-zero only when ̂1 + ̂2 = 0,−1. The bulk-

boundary couplings have the following form

〈Φ±
p,̂1

(x1)ψ
χχ
∓2p,̂2

(x2)〉 = e−px2(x1+x̄1)(x1 − x̄1)
±ν χB

(±2p,−̂2)
(±p,̂) 〈1〉χ . (5.1.2)

Here ν = −2̂1 − ̂2 and the coupling is non-zero only when ̂2 = −2̂1 ∓n, n ∈ N. In

order to write the couplings for the Φ0
s,̂ vertex operators, it is convenient to introduce

two new angles defined by

α = β + γ , ᾱ = β − γ , 0 ≤ β ≤ 2π , −π ≤ γ ≤ π . (5.1.3)
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We obtain

〈Φ0
s,̂1

(x1)ψ
χχ
t,̂2

(x2)〉 = π(x1x̄1)
ν
2

∑

m∈Z

[

− x2
2

x1x̄1

]m

[δ(γ − θ) + δ(γ − θ − π)] χBt
s 〈1〉χ ,

(5.1.4)

where t = 2s sin θ and ν = −2̂1 − ̂2 ∈ Z. The coupling with the identity can be

obtained by setting t = 0 and integrating over α2

〈Φ0
s,̂1(x)〉 = π(xx̄)

ν
2 [δ(γ) + δ(γ − π)]χB1

s 〈1〉χ . (5.1.5)

There are two non-trivial bulk two-point functions that may be used to derive the

constraint for the bulk-boundary couplings, namely 〈Φ0
s,̂1

Φ0
t,̂2

〉 and 〈Φ+
p,̂1

Φ−
−p,̂2〉. The

first one is very similar to the corresponding amplitude in flat space. Indeed, the

form of χBt,̂2
s,̂1

turns out to be very simple

χBt,̂2
s,̂1

=
1

s
cos

[√
2χs cos θ

]

, ν ∈ 2Z ,

χBt,̂2
s,̂1

=
i

s
sin

[√
2χs cos θ

]

, ν ∈ 2Z + 1 , (5.1.6)

with t2 = 4s2 sin2 θ and θ ∈ [0, π). The second correlator leads to the following

constraint

χB
(2p,2̂1+n)
(p,̂1)

χB
(−2p,2̂2−n+ν)
(−p,̂2) Cχχχ,1

(2p,2̂1+n),(−2p,2̂2−n+ν)

=

∫ ∞

0

dss C(p,̂1),(−p,̂2)
(s,̂) χB1

s F(s,̂),(2p,2̂1+n)

[

(p, ̂1) (p, ̂1)

(−p, ̂2) (−p, ̂2)

]

, (5.1.7)

which is solved by

χB
(±2p,2̂1±n)
(±p,̂) =

1√
2

in

2
n
2 n!

(

π2 cot πµp
)

1
4

[

γ(2µp)

γ2(µp)

]n
2
+ 1

4

e−
χ2

2π cot πµpHn

(

± χ√
π cot πµp

)

.

(5.1.8)

This exact result and the semiclassical computation (3.11) agree in the limit µp << 1.

Actually the two results differ only in that µp has to be replaced by tan(πµp) in the

argument of both the exponential and the Hermite polynomials and that the overall

powers of µp have to become powers of γ(µp). Note also the similarity of this coupling

with the square-root of a bulk coupling of the form C++− (5.12), as expected on

general grounds. Finally, it is interesting to remark that the coupling vanishes when

µp = 1/2 and it has to be replaced by the coupling with a spectral-flowed boundary

operator. These couplings can be computed either using the free-field realization of

[38, 39, 35] or by studying the factorization of a four-point amplitude with suitable

external momenta.

We now proceed to the computation of the boundary three-point couplings. The

D2 branes of the H4 WZW model are not Cardy branes and in the absence of an
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one-to-one correspondence between the brane parameters and the representations of

the chiral algebra, there is no natural relation between the boundary three-point

couplings and the fusing matrices. In the absence of any ansatz, we have to solve

directly the constraints. Fortunately, at least the couplings between open strings

living on the brane at χ = 0 are simple. They are given by

C000,r
s,t = δ(s+ t− r) ,

C000,s
(p.̂1),(−p,̂2) = e

s2

4
σ(p) ,

C
000,(p1−p2,̂1+̂2−n)
(p1,̂1),(−p2,̂2) =

√
2π1/4

n!!

[

γ(p1)

γ(p2)γ(p1 − p2)

]n
2
+ 1

4

, n ∈ 2N ,

= 0 , n ∈ 2N + 1 , (5.1.9)

and we see that they are very similar to the square root of the bulk couplings. The

kinematical parts can be easily obtained from (5.14) and (5.17). The fact that the

last coupling vanishes whenever n ∈ 2N + 1 is easy to understand if we perform a

semiclassical computation using the wave functions (3.11).

In order to find the solution for branes sitting at arbitrary positions, we rely once

more on the fact that the boundary vertex operators in the continuous representations

are very similar to the standard tachyonic vertex operators in flat space. If we also

take into account the finite length of the open string stretched between two branes

at χi and χj , we conclude that the quantity that is conserved in the interactions of

the ψ
χiχj

s,̂ vertex operators is not s but

s̃ ≡ sign(s)
√

s2 − b2χ2
ij , |s| ≥ b|χij | , χij = χi−χj , b2 = 1/2π2 . (5.1.10)

As a consequence, we expect that the general form of the coupling between three

vertex operators in the continuous representations is

Cχ1χ2χ3
str = δ(s̃+ t̃+ r̃) . (5.1.11)

Consider now the correlator

〈ψχ1χ2

(p,̂1)
(1)ψχ2χ3

(−p,̂2)(2)ψχ3χ4

(s,̂3)
(3)ψχ4χ1

(t,̂4)(4)〉 , (5.1.12)

where for clarity the numbers in the round brackets stand for both the charge vari-

ables and the worldsheet coordinates of the corresponding vertex operators. This

correlator factorizes on a single block in the s-channel and leads to the sewing con-

straint

Cχ4χ2χ3

(p,−̂2−̂3+n),(−p,̂2),(s,̂3)C
χ1χ2χ4

(p,̂1),(−p,̂2+̂3−n),(t,̂4) =

Cχ1χ2χ3

(p,̂1),(−p,̂2),(−r,−̂)e
− st

2
(σ(p) cosϕ−iπ cot πp sinϕ)−i(n+ν)ϕ+iζν , (5.1.13)
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where

steiϕ = (s̃+ ibχ34)(t̃− ibχ41) , reiζ = s+ teiϕ . (5.1.14)

Note that according to (5.1.11), when raising a continuous index s we must multiply

the coupling by s/s̃. From the previous constraint, we may read the coupling between

one continuous and two discrete representations

Cχ1χ2χ3,s
(p,̂1),(−p,̂2) =

s

s̃

[

s

s̃ + ibχ13

]̂1+̂2−̂3
e−

iπbs̃
sin πp

χ2+i
π
2

cot πp s̃b(χ1+χ3)+
s2

4
σ(p) ,

Cχ1χ2χ3,s
(−p,̂1),(p,̂2) =

s

s̃

[

s

s̃− ibχ13

]̂1+̂2−̂3
e

iπbs̃
sin πp

χ2−iπ
2

cotπp s̃b(χ1+χ3)+ s2

4
σ(p) , (5.1.15)

where |s| ≥ b|χ13|. Actually, the phase proportional to χ2 is not fixed by equation

(5.1.13) but by the constraint associated with the correlator

〈ψχ1χ2

(p,̂1)
(1)ψχ2χ3

(−p,̂2)(2)ψχ3χ4

(p,̂3)
(3)ψχ4χ1

(−p,̂4)(4)〉 , (5.1.16)

which reads

C
χ2χ3χ4,(s,̂s)
(−p,̂2),(p,̂3)C

χ4χ1χ2

(−p,̂4),(p,̂1),(s,̂s) + (−1)ν(s→ −s) =

∫ ∞

|χ13|
dt

πs

sin πp
e

s2−t2

2
σ(p)

Jν

(

πst

sin πp

)

[

C
χ1χ2χ3,(t,̂t)
(p,̂1),(−p,̂2)C

χ3χ4χ1

(p,̂3),(−p,̂4),(t,̂t) + (−1)ν(t→ −t)
]

. (5.1.17)

In order to verify that the couplings in (5.1.15) solve the previous constraint, one

needs the integral (H.14). At this point the correlator

〈ψχ1χ2

(p,̂1)
(1)ψχ2χ3

(−p,̂2)(2)ψχ3χ4

(q,̂3)(3)ψχ4χ1

(−q,̂4)(4)〉 , (5.1.18)

gives a constraint whose unknowns are the couplings between three discrete repre-

sentations. The constraint is

C
χ2χ3χ4,(−(p−q),̂2+̂3+n)
(−p,̂2),(q,̂3) C

χ1χ2χ4,(q,−̂4)
(p,̂1),(−(p−q),̂2+̂3+n) =

∫ ∞

|χ13|
dsF(s,̂s),(−(p−q),̂2+̂3+n)

[

(p, ̂1) (−p, ̂2)

(−q, ̂4) (q, ̂3)

]

[

C
χ1χ2χ3,(s,̂s)
(p,̂1),(−p,̂2)C

χ3χ4χ1

(q,̂3),(−q,̂4),(s,̂s) + (−1)ν(s→ −s)
]

, (5.1.19)

and it involves the following fusing matrix

F(s,̂s),(−(p−q),̂2+̂3+n)

[

(p, ̂1) (−p, ̂2)

(−q, ̂4) (q, ̂3)

]

=
1

n!

[

Γ(p)Γ(1 − q)

Γ(p− q)

]ν+1 [

γ(p)

γ(q)γ(p− q)

]n−ν

[

s√
2

]ν

e−
s2

2
(ψ(p)+ψ(1−q)−2ψ(1))Lνn−ν

(

s2π sin π(p− q)

2 sinπp sin πq

)

. (5.1.20)

The integral on the right hand side can be evaluated using (H.13). We obtain

C
χ1χ2χ3,(−(p−q),̂1+̂2+n)
(−p,̂1),(q,̂2) =

2
1
2π

1
4 in

2
n
2 n!

[

γ(p)

γ(q)γ(p− q)

]n
2
+ 1

4

e−
Q2

2 Hn(−Q) ,

C
χ1χ2χ3,((p−q),̂1+̂2−n)
(p,̂1),(−q,̂2) =

2
1
2π

1
4 in

2
n
2 n!

[

γ(p)

γ(q)γ(p− q)

]
n
2
+ 1

4

e−
Q2

2 Hn(Q) , (5.1.21)
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where

Q =
(χ1 sin πq + χ2 sin π(p− q) − χ3 sin πp)

√

2π sin πp sin π(p− q) sin πq
. (5.1.22)

Similarly

C
χ1χ2χ3,(p+q,̂1+̂2+n)
(p,̂1),(q,̂2)

=
2

1
2π

1
4 in

2
n
2 n!

[

γ(p+ q)

γ(p)γ(q)

]
n
2
+ 1

4

e−
Q2

2 Hn(−Q) ,

C
χ1χ2χ3,(−p−q,̂1+̂2−n)
(−p,̂1),(−q,̂2) =

2
1
2π

1
4 in

2
n
2 n!

[

γ(p+ q)

γ(p)γ(q)

]n
2
+ 1

4

e−
Q2

2 Hn(Q) , (5.1.23)

where

Q =
(χ1 sin πq − χ2 sin π(p+ q) + χ3 sin πp)

√

2π sin πp sin π(p+ q) sinπq
. (5.1.24)

The kinematical part is similar to the one given in (5.14). We did not check the

constraint (5.9) for this family of branes.

There are many similarities between the H4 WZW model and the orbifold CFT

of a plane with points identified by a rotation, stemming from the free field realization

found in [38, 39]. It is therefore worth to compare the couplings derived in this section

with the couplings for intersecting branes in toroidal compactifications, discussed in

[87, 88, 89]. Actually, we can start directly from branes at angles in flat space.

The boundary three-point couplings contains a quantum part that can be computed

using orbifold twist fields [88, 89] and that coincides with (5.1.21) and (5.1.23) with

n = Q = 0. They also receive contributions from disc world-sheet instantons that

behave as

Cijk ∼ e−
Aijk
2π , (5.1.25)

where Aijk is the area of the triangle formed by the three intersecting branes (see fig.

1). Consider first three branes intersecting at the origin. In this case Aijk = 0. The

couplings in the H4 model in this case contain no exponential contribution depending

on the position of the branes. We now move each brane parallel to itself a distance

di from the origin. If we call αij the angle between the brane i and the brane j, the

area of the triangle is

Aijk =
[d1 sinα23 + d2 sinα13 − d3 sinα12]

2

2 sinα12 sinα13 sinα23
. (5.1.26)

We recognize that the instanton contribution (5.1.25) coincides with the exponential

term in (5.1.22) and (5.1.24) upon setting di = χi and identifying the angles αij with

the light-cone momentum carried by the vertex operators ψ
χiχj

±p,̂ .

Finally there is an interesting limit to consider. The limit χ → ∞ in the H4

model is the analogue of the limit ψ → ∞ in which an AdS2 brane is moved towards

the boundary of AdS3. In this limit, as discussed in [73], one obtains a so called

NCOS theory [82, 83], which is a theory of open strings decoupled from the closed
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Figure 1: World-sheet instanton contribution to the couplings for intersecting brane mod-

els.

string sector. In our case however there is an important difference: after the Penrose

limit, the world-volume flux is null and therefore there is no notion of a critical

electric field. In this respect, the world-volume theories of the D2 branes provide

examples of theories with light-like non-commutativity [84]. We may also observe

that in the limit χ → ∞, only the bulk continuous representations remain coupled

to the brane. The couplings in (5.1.21) and (5.1.23) between open strings in discrete

representations are exponentially suppressed. Thus the strings interact in this limit

only through the exchange of states in the continuous representations.

5.2 The S1 branes

In this section we provide a detailed solution for the structure constants of the S1

branes. We start with the boundary two-point functions for open strings ending on

two different branes a and b, sitting at different positions in the u direction. As

explained in section 4, the vertex operators for the open strings stretched between

the two branes belong to the V +
pab,̂ab−n representations, n ∈ N, when pb > pa and

to the V −
pab,̂ab+n

representations, n ∈ N, when pb < pa. We will use the shorthand

notation ψab
pab,̂ab∓n = ψab

pab,n
where the sign in ̂ab ∓ n is fixed accordingly to the sign

of pab. The two-point functions are

〈ψabpab,n1
(t1, x1)ψ

ba
pba,n2

(t2, x2)〉a = Caba,1
n1;n2

〈1〉ae−|pab|x1x2δn1,n2 . (5.2.1)

When the two branes are at the same position in the u direction, the open strings

ending on them belong to the continuous representations. In particular, when a = b

we have

〈ψaas1 (t1, x1)ψ
aa
s2 (t2, x2)〉a = Caaa,1

s1s2 〈1〉a2π δ(α1 − α2 − π)
δ(s1 − s2)

s1
. (5.2.2)
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The Ward identities completely fix the dependence of the bulk-boundary cou-

plings on the charge variables

〈Φ+
p,̂(z, x1)ψ

aa
s (t, x2)〉a = e

−px1x̄1− s√
2

(

x̄1x2+
x1
x2

)

aBs
p,̂〈1〉a ,

〈Φ−
p,̂(z, x1)ψ

aa
s (t, x2)〉a = e

−px1x̄1− s√
2

(

x1x2+
x̄1
x2

)

aBs
−p,̂〈1〉a , (5.2.3)

〈Φ0
s1,̂

(z, x1)ψ
aa
s2

(t, x2)〉a = 8π2δ(α1 − ᾱ1 − 2α2 + π)δ(θ + α1 + ᾱ1)
aBs2

s1,̂
〈1〉a .

The last coupling is non-zero only when 0 ≤ s2 ≤ 2s1 and we set

s2 = 2s1 sin
θ

2
. (5.2.4)

The bulk one-point functions with the identity, are particular cases of the previous

expressions

〈Φ±
p,̂(z, x)〉a = e−pxx̄ aB1

±p,̂〈1〉a ,
〈Φ0

s,̂(z, x)〉a = 2πδ(α + ᾱ) aB1
s,̂〈1〉a . (5.2.5)

We can fix all the bulk-boundary structure constants by studying the factorization

of the three kinds of bulk two-point functions, namely 〈Φ+
p Φ+

q 〉, 〈Φ+
p Φ−

q 〉 (where we

have to distinguish between p > q and p = q) and 〈Φ+
p Φ0

s〉. Using the bulk three-

point couplings in (5.12 − 5.15) and the fusing matrices in appendix B, the sewing

constraints can be written as follows

aBs
p,̂1

aBs
q,̂2 =

√

θp,qe
s2

2
(ψ(p)+ψ(q)−2ψ(1))

∞
∑

n=0

Ln

(

θp,q
s2

2

)

aB1
p+q,̂1+̂2+n , (5.2.6)

aBs
p,̂1

aBs
−q,̂2 =

√

θ−p,qe
s2

2
(ψ(q)+ψ(1−p)−2ψ(1))

∞
∑

n=0

Ln

(

θ−p,q
s2

2

)

aB1
p−q,̂1+̂2−n ,

aBs
p,̂1

aBs
−p,̂2 =

π

sin πp
e

s2

2
(ψ(p)+ψ(1−p)−2ψ(1))

∫ ∞

0

dt tJ0

(

πst

sin πp

)

aB1
t,̂1+̂2 ,

aBs2
p,̂1

aBs2
s1,̂2

=
e
− iπs21 sin θ

2 tan(πp)

πs2
1 sin θ

e
s21(1−cos θ)

2
(ψ(p)+ψ(1−p)−2ψ(1))

∑

n∈Z

einθ aB1
p,̂1+̂2+n

,

where θp,q = π cotπp+ π cot πq and as before s2
2 = 2s2

1(1 − cos θ). The solution is

aBs
±p,̂ =

√

π

sin πµp

e±2ipη+îu

1 − e±iµu
e

s2

4
[ψ(µp)+ψ(1−µp)−2ψ(1)]∓ iπs2

4 tan(πµp) tan(µu
2 ) ,

aBs2
s1,̂

=
eîu

πs2
1 sin θ

2πδ(µu− θ) , s2
2 = 2s2

1(1 − cos θ) . (5.2.7)

Note the similarity between the first coupling and a bulk three-point coupling of the

form C+−0 (5.15), as expected on general grounds. The second coupling can also be

written as
aBs2

s1,̂
= eîu

δ(s2(u) − s2)

s2
, s2

2(u) = 4s2
1 sin2 µu

2
. (5.2.8)
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Finally the one-point functions with the identity, relevant for the construction of the

boundary states, are a particular case of the previous couplings and read

aB0
±p,̂ =

√

π

sin πµp

e±2ipη+îu

1 − e±iµu
= ± i

2 sin u
2

√

π

sin πµp
e±ipη+îu∓

iu
2 ,

aB0
s,̂ =

eîu

4 sin2
(

µu
2

)

δ(s)

s
. (5.2.9)

Whenever µu = π+ 2πn the couplings in (5.2.7) simplify, since the brane is trivially

embedded in the space-time. On the other hand, whenever µu = 2πn, the behavior

of the couplings in (5.2.7) reflects the change in the geometry of the branes. We have

first to multiply the structure constants by the one-point function of the identity

〈1〉a = sin(µua/2). We then observe that the first coupling in (5.2.7) becomes non-

trivial only for s = 0, as expected since only these representations live on the S(−1)

brane world-volume. As for the couplings of the continuous representations, they are

now non-zero for every value of s1 while s2 has to vanish. One can think of this process

as an interpolation between Neumann and Dirichlet boundary conditions induced by

the flux on the brane world-volume. In the limit µp << 1 these couplings reproduce

the semi-classical expressions derived in section 3.

We determine now the boundary three-point couplings. Even though the explicit

form of these couplings is slightly more involved than the couplings we computed in

the previous section for the D2 branes, our task is in this case simplified since the

S1 branes are the Cardy branes of the H4 WZW model. The three-point boundary

couplings for Cardy boundary conditions in a RCFT, due to the one-to-one corre-

spondence between the boundary labels and the representations of the chiral algebra,

can be expressed using the fusing matrices. This was first realized in the case of the

Virasoro minimal models [78]. Indeed, one can verify that setting

Cabc,k
ij ∼ Fb̌k

[

i j

a č

]

, (5.2.10)

the constraint (5.7) is satisfied as a consequence of the pentagon relation between

the fusing matrices [85]. The previous relation proved very useful in order to study

the effective field theory on the brane world-volume. Indeed, the fusing matrices of

a WZW model based on the group G coincide with the Racah coefficients of the

quantum group algebra Uq(G), where q = e
2πi
k+g with k the level and g the dual

Coxeter number. In the limit q → 1, the quantum Racah coefficients reduce to the

classical ones, a fact that has been exploited in [69, 81] to study the non-commutative

geometry on the brane world-volume. Similar observations were made also for some

non-compact CFTs, most notably for the Euclidean version of AdS3 [44] and the

Liouville model [49]. We now verify that the relation between the fusing matrices and

the three-point boundary couplings (5.2.10) remains valid also for the non-compact

H4 WZW model.
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In the following, we will repeatedly use the relation (4.5) between the brane

parameters and the H4 quantum numbers. As it was the case for the bulk theory, we

can distinguish between various types of boundary three-point couplings. Consider

three S1 branes with labels a, b and c. When pc > pb > pa, we have a boundary

coupling similar to a bulk C++− coupling

〈ψabpab,n1
(t1, x1)ψ

bc
pbc,n2

(t2, x2)ψ
ca
pca,n3

(t3, x3)〉a = Cabc,n3
n1n2

Caca,1
n3ň3

〈1〉ae−x3(|pab|x1+|pbc|x2)(x1−x2)
ν ,

(5.2.11)

where ν = n1 + n2 − n3. When pb > pa = pc, we have a boundary coupling similar

to a bulk C+−0 coupling

〈ψabpab,n1
(t1, x1)ψ

bc
pbc,n2

(t2, x2)ψ
ca
s,̂ca(t3, x3)〉a = Cabc,s

n1n2
Caca,1
ss 〈1〉ae−|pab|x1x2− s√

2

(

x2x3+
x1
x3

)

xν3 ,

(5.2.12)

where ν = n1 − n2. Finally, when pa = pb = pc we have a boundary coupling similar

to a bulk C000 coupling

〈ψabs1 (t1, x1)ψ
bc
s2(t2, x2)ψ

ca
s3 (t3, x3)〉a = Cabc,s3

s1s2 Caca,1
s3s3 〈1〉a(2π)2δ(α2−α3−ϕ)δ(α1−α2+θ) ,

(5.2.13)

with

s2
3 = s2

1 + s2
2 − 2s1s2 cos θ , eiϕ =

s1 − s2e
−iθ

s3
. (5.2.14)

The other configurations can be obtained by permuting the fields in the previous

expressions. It is also useful to remember that for the continuous representations,

raising an index is equivalent to (x, ̂) 7→ −(x, ̂) while for the discrete representation

it corresponds to (x, ̂) 7→ −(x∗, ̂).

We adopt now the following strategy. We assume that the three-point bound-

ary couplings are given by the fusing matrices, up to a choice of normalization

for the boundary fields. We then use the constraints pertaining to the correlators

〈ψabψbaψabψba〉 and 〈ψabψbaψaaψaa〉 to fix a convenient normalization for both the

discrete ψabpab,n and the continuous ψaas vertex operators. Finally we verify that the

couplings determined in this way solve the other constraints as well.

Let us start with the three-point coupling between two open strings stretched

between a pair of S1 branes with labels a and b and an open string that lives on the

world-volume of one of the two S1 branes. This coupling involves two discrete and

one continuous representation and is related to the following fusing matrix

Caba,s
(pab,n1),(−pab,n2)

= ωaba(n1, n2)F(−pb,̂2−̂a−n2),s

[

(pab, ̂1) (−pab, ̂2)

(pa, ̂a) (−pa,−̂a)

]

, (5.2.15)

with pb > pa, ̂1 = ̂ab − n1 and ̂2 = ̂ba + n2. Similarly,

Cbab,s
(−pab,n1),(pab,n2)

= ωbab(n1, n2)F(−pa,̂2−̂b+n2),s

[

(−pab, ̂1) (pab, ̂2)

(pb, ̂b) (−pb,−̂b)

]

, (5.2.16)
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with ̂1 = ̂ba + n1 and ̂2 = ̂ab − n2. Here ωaba and ωbab are proportionality factors

that can depend on all the quantum numbers involved even though we only em-

phasized their dependence on the labels n1 and n2. The factorization constraint for

〈ψabψbaψabψba〉 reads

C
bab,(s,{̂ac})
(−p,̂ba+n2),(p,̂ab−n3)

C
bab,(s,{̂ac})
(−p,̂ba+n4),(−p,̂ab−n1)

〈1〉b =

∫ ∞

0

dt te
s2−t2

2
σ(p)

π

sin πp
Jν

(

πst

sin πp

)

C
aba,(t,{̂ac})
(p,̂ab−n1),(−p,̂ba+n2)

C
aba,(t,{̂ac})
(p,̂ab−n3),(−p,̂bc+n4)

〈1〉a , (5.2.17)

where p = pb − pa > 0 and ν = n1 + n3 − n2 − n4. Using the integral (H.8) one

can verify that the constraint is satisfied if the following relation holds between the

proportionality factors ωaba

〈1〉aωaba(n1, n2)ωaba(n3, n4) sin πpb = 〈1〉bωbab(n2, n3)ωbab(n4, n1) sin πpa . (5.2.18)

Combining the previous equation with the continuity of the two-point function on

the disc

〈1〉aωaba(n, n) sin πpb = 〈1〉bωbab(n, n) sin πpa , (5.2.19)

we obtain ωaba(n, n) = ωbab(n, n). A convenient choice for the normalization is

ωaba(n1, n2) =
1

n2!

[

γ(pb)

γ(pa)γ(p)

]n2
[

Γ(1 − pa)Γ(pb)

Γ(p)

]n1−n2+1

,

ωbab(n1, n2) =
1

n1!

[

γ(pb)

γ(pa)γ(p)

]n1
[

Γ(1 − pa)Γ(pb)

Γ(p)

]n2−n1+1

. (5.2.20)

Once we make this choice, (5.2.18) implies the following relation for the one-point

function of the identity

〈1〉a sin πpb = 〈1〉b sin πpa , (5.2.21)

which is satisfied if 〈1〉a ∼ sin πpa. This is indeed the case as we will se in section 7.

We may now write

Caba,s
(p,n1),(−p,n2)

=
π

sin πpa

[

π s√
2 sin πpa

]n1−n2

e
s2

2 [ψ(p)−ψ(1)−π
2

cot πpa]

Ln1−n2
n2

[

πs2

2
(cot πp+ cot πpa)

]

,

Cbab,s
(−p,n1),(p,n2)

=
π

sin πpb

[

π s√
2 sin πpb

]n2−n1

e
s2

2 [ψ(p)−ψ(1)+ π
2

cot πpb]

Ln2−n1
n1

[

πs2

2
(cot πp− cotπpb)

]

, (5.2.22)

with p = pb−pa > 0 and Lmn (x) a generalized Laguerre polynomial. Note the different

behavior of the first of these couplings for pa → 0 and pb → 0. In the first case it

31



is non-zero only for s = 0 and n1 = n2 while it remains essentially unchanged in

the second case. This is as expected since only the identity exists on the brane at

ua = 0 while the open string spectrum for the brane at µu = 2πpb contains all the

representations ψbbs , s ≥ 0.

Consider now the coupling between three open strings that live on the same

brane. This is a coupling between three continuous representations. In terms of the

fusing matrices we have

Caaa,r
s,t = ωaaaF(−pa,−̂a),r

[

s t

(pa, ̂a) (−pa,−̂a)

]

. (5.2.23)

In this case we set ωaaa = 1 which is equivalent to Caaa,1
s,s = 1. The constraint for

〈ψabψbaψaaψaa〉 is

Caba,r
(p,̂ab−n1),(−p,−̂ab+n2)

Caaa,r
s,t =

1

πst sin θ
e

st
2
−[σ(p) cos θ+i sin θπ cot πp]−iϕν

∞
∑

n=0

ei(n1−n)(π−θ)C
baa,(−p,−̂ab+n)

(−p,−̂ab+n2),s
Caba,t

(p,̂ab−n1),(−p,−̂ab+n)
, (5.2.24)

where p = pb − pa > 0, ν = n1 − n2, r
2 = s2 + t2 − 2st cos θ and eiϕ = s−te−iθ

r
. In

order to verify that this constraint is satisfied, one can use the series (H.11). The

result is

Caaa,r
ts =

1

πst sin θ
e

iπst sin θ
2 tan πpa , (5.2.25)

with r2 = s2 + t2 − 2ts cos θ. For r = 0, θ = 0 the three-point function reproduces

the two-point function in (5.2.2).

At this point, we have completely fixed the normalization of the boundary vertex

operators. Thus, the factorization constraints for the other four-point amplitudes

represent a consistency check on the solution.

The constraint for 〈ψabψbaψadψda〉 is slightly more complicated and reads

C
bad,(−(p−q),̂bd+n)

(−p,−̂ba+n2),(q,̂ad−n3)
C
abd,(q,̂ad−n4)

(p,̂ab−n1),(−(p−q),̂bd+n)
=

1

(n− n2 + n3)!

[

Γ(p)Γ(1 − q)

Γ(p− q)

]α+1

sin πpd
π

[

γ(q)

γ(p)γ(q − p)

]n+n4−n1
∫ ∞

0

ds s

[

s2

2

]ν/2

e−
s2

2
(ψ(p)+ψ(1−p)−2ψ(1)) (5.2.26)

Lνn+n4−n1

[

πs2

2
(cot πq − cot πp)

]

Caba,s
(p,̂ab−n1),(−p,−̂ab+n2)

Cada,s
(q,̂ad−n3),(−q,−̂ad+n4)

,

where p = pb− pa > 0, q = pd− pa > 0 and ν = n1 + n3 − n2 − n4. In order to verify

that this constraint is satisfied one can use the integral (H.13). Consider now the

couplings between states in discrete representations. Using the relation (5.2.10) we

can write

C
abc,(pac,̂3)

(pab,̂1)(pbc,̂2)
= F(−pb,̂2−̂c+n2),(pac,̂1+̂2+k)

[

(pab, ̂1) (pbc, ̂2)

(pa, ̂a) (−pc,−̂c)

]

,
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where ̂1 = ̂ab − n1, ̂2 = ̂bc − n2, ̂3 = ̂ac − n3 and k = n1 + n2 − n3 ≥ 0. Similar

expressions hold for the other couplings between discrete representations and can be

found in appendix D.

For completeness we display here the explicit form of one of these couplings

C
abc,(p−q,̂3)
(p,̂1)(−q,̂2) =

(n2 + n3)!

n3!(n2 + n3 − n1)!

sin π(p− q)

sin πpc

[

γ(p)

γ(q)γ(p− q)

]
k+1
2

[

π sin πq

sin πp sin π(p− q)

]
k+1
2

[

sin πpa
π

]k

F (−n2, n1 − n2 − n3,−n2 − n3, τ) , (5.2.27)

where ̂1 = ̂ab − n1, ̂2 = ̂bc + n2, ̂3 = ̂ac − n3 and

τ =
sin πp sin πpc
sin πq sin πpa

. (5.2.28)

Note that k ≡ n3 − n1 + n2 ≥ 0. There are other constraints we should verify.

We also checked the constraints following from amplitudes with one bulk and two

boundary operators while we did not check the constraint related to the amplitude

〈ψabψbcψcdψda〉.
It is interesting to compare the coupling in (5.2.25) with the coupling between

open tachyon vertex operators on a two-torus with a magnetic field B [66, 86]. Con-

sider two free bosonic fields X1 and X2 with the boundary conditions

∂σX1 + F∂τX2 = 0 , ∂σX2 − F∂τX1 = 0 , (5.2.29)

where F = 2πα
′
B. In this case the momenta are measured using the open string

metric

Gij =
1

1 + F 2
δij , (5.2.30)

and the conformal dimension of a boundary tachyon vertex operator ei~p
~X is

h =
α

′
p2

1 + F 2
. (5.2.31)

Moreover in the OPE there is a momentum dependent phase

ei~p
~X(t1) ei~q

~X(t2) ∼ (t1 − t2)
2α

′
Gijpiqj ei

θij

2
piqj ei(~p+~q)

~X(t2) , (5.2.32)

where the deformation parameter is

θij = − 2πα
′
F

1 + F 2
ǫij . (5.2.33)

Comparing the conformal dimension of ψaas with (5.2.31) we see that p2 = s2(1+F 2).

Thus comparing the phase in (5.2.32) with the one in (5.2.25) we can identify

F (u) = − cot
µu

2
, (5.2.34)
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which is the expected result. Note that the magnetic field vanishes for u = π+ 2πn,

which corresponds to the flat S1 brane or equivalently to Neumann boundary condi-

tions on X1 and X2. Changing the value of u we get the mixed Neumann-Dirichlet

boundary conditions in (5.2.29) until we reach u = 2πn, where the field-strength

diverges and therefore the boundary conditions become pure Dirichlet. In fact, pre-

cisely for these values of the coordinate u, the two-dimensional conjugacy classes

degenerate to points. According to the analogy with open strings in a magnetic

field, the strings that live on the brane world-volume belong to the continuous rep-

resentations since their ends are both subject to the same magnetic field and then

they behave as free strings. On the other hand, the strings stretched between two

different branes feel generically different magnetic fields and the corresponding vertex

operators are therefore twist fields or, in H4 terminology, they belong to the discrete

representations. The twist for a string stretched from brane b to brane a is given by

[66]

ǫab =
1

π
[arctanF (ub) − arctanF (ua)] =

ub − ua
2π

, (5.2.35)

as expected. The effective field theory on the world-volume of an S1 brane is the

limit of the non-commutative field theory on the fuzzy sphere pertaining to the S2

branes in S3: the volume and the magnetic flux are both scaled to infinity in order

to obtain the non-commutative plane in the limit.

6. Four-point amplitudes

In the previous section we derived all the structure constants for the two families

of boundary CFTs that describe the D2 and the S1 branes of the H4 WZW model.

These are the essential ingredients for the solution of the models. We may now

compute arbitrary correlation functions by sewing together the basic one, two and

three-point amplitudes. Here, we are going to discuss in this section only those disc

amplitudes that can be expressed in terms of the four-point conformal blocks, namely

amplitudes containing either two bulk fields 〈ΦΦ〉 or one bulk and two boundary fields

〈Φψψ〉 or four boundary fields 〈ψψψψ〉.
In the following, we will provide some examples for each type of amplitude, both

for the D2 and the S1 branes. There are of course many other amplitudes one could

consider, besides the few we are going to discuss here. In general, one can write

for them a decomposition in terms of our conformal blocks and structure constants

but we expect that using series and integrals more general than the ones we use in

this paper one should be able to find a closed form for many of them. It will be

interesting to analyze their properties in detail, both from the CFT and the string

theory point of view.

As in the previous section, in order to avoid writing unnecessarily large formulae,

we denote with a single number in round brackets all the variables a vertex operator
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depends on. This includes its insertion point and the charge variables. The four-

point conformal blocks we will need in the following computations are displayed in

appendix C. We choose the gauge

A(z1, z2, z3, z4) =
4

∏

j>i=1

z
h
3
−hi−hj

ij A(z) , z =
z12z34
z13z24

, (6.1)

where h =
∑4

i=1 hi, zij = zi − zj and the zi can represent the insertion points of

either a bulk or a boundary vertex operator. Finally we set ν = −
∑4

i=1 ̂i.

6.1 The D2 branes

For the D2 branes we only display a very simple amplitude

A = 〈ψχ1χ2

p,̂1
(1)ψχ2χ1

−p,̂2(2)ψχ1χ2

p,̂3
(3)ψχ2χ1

−p,̂4(4)〉 . (6.1.1)

In this case the integral over the conformal blocks can be performed explicitly and

we obtain

A(z) = zκ12(1 − z)κ14e−p(x1x2+x3x4)

[

x1 − x3

x4 − x2

]
ν
2
[

2 sin πp

c1(z)c1(1 − z)

]
1
2

(6.1.2)

e
xpz−xz(1−z)∂ ln c1(z)− x sin πp

2πc1(z)c1(1−z) Iν/2

(

x sin πp

2πc1(z)c1(1 − z)

)

,

where c1(z) = F (p, 1 − p, 1, z), x = (x1 − x3)(x2 − x4) and Iν is a modified Bessel

function. Moreover

κ12 = h1 + h2 −
h

3
+ p2 + (̂1 − ̂2)p− p ,

κ14 = h1 + h4 −
h

3
+ p2 + (̂1 − ̂4)p− p . (6.1.3)

Even though this amplitude does not depend on the brane parameters χi, it is inter-

esting since we can expand it in powers of the charge variables and compare the corre-

lator of the ground states of the H4 representations with the correlator of open strings

living at the intersection of two branes at an angle [88, 89], which can be described

by boundary twist fields. The two expressions indeed coincide upon identifying the

light-cone momentum p with the angle formed by the two branes, as expected given

the relationship between the primary vertex operators in the Nappi-Witten back-

ground and the orbifold twist fields [38, 39, 35]. Our open string amplitudes in the

gravitational wave can be thought of as generating functions for the correlators of

arbitrarily excited boundary twist fields in orbifold models or equivalently of open

strings living at the intersection of a configuration of branes at angles.
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6.2 The S1 branes

For the S1 branes we provide several explicit examples of four-point amplitudes.

As we mentioned in the introduction, the space-time interpretation of these corre-

lation functions deserves further investigation, in particular those involving on-shell

open string states stretched between branes localized at different positions in the u

direction.

We start from the bulk two-point functions on the disc. This gives the first

correction to the propagation of the closed strings due to the presence of the S-

brane. Using the results of section 5 and the conformal blocks in appendix C we

obtain

〈Φ+
p,̂1

Φ−
q,̂2

〉a = 〈1〉ae−px1x̄1−qx2x̄2
zκ12(1 − z)κ14

√

γ(p)γ(q)

ei(p−q)ηa+i(̂1+̂2)ua

1 − eiua

e−x(1−z)q−xz(1−z)∂ lnB(z)

B(z)
,

(6.2.1)

where (ua, ηa) are the brane parameters,

B(z) =
F (q, 1 − p, 1 − p+ q, z)

γ(p)Γ(1 − p+ q)
− e−iuazp−q

F (p, 1 − q, 1 − q + p, z)

γ(q)Γ(1 − q + p)
, (6.2.2)

and

z =
|z1 − z2|2
|z1 − z̄2|2

, x = (x1 − x̄2)(x2 − x̄1) . (6.2.3)

Here

κ12 = h1 + h2 −
h

3
+ p q − ̂2p+ ̂1q − q , κ14 = 2h1 −

h

3
+ p2 + 2̂1p− p . (6.2.4)

When p = q only the identity couples to the brane in the closed channel and the

correlator simplifies

〈Φ+
p,̂1

Φ−
p,̂2

〉a = 〈1〉ae−px1x̄1−qx2x̄2
ei(̂1+̂2)ua

4 sin2 ua

2

zκ12(1 − z)κ14

c1(z)
e−x(1−z)p−xz(1−z)∂ ln c1(z) ,

(6.2.5)

where

c1(z) = F (p, 1 − p, 1, z) . (6.2.6)

We also display the closely related amplitude

〈Φ+
p,̂1

Φ+
q,̂2

〉a = 〈1〉ae−px1x̄1−qx2x̄2
zλ12(1 − z)λ14

√

γ(1 − p)γ(q)

ei(p+q)η+i(̂1+̂2)ua

1 − eiua

e−x(1−z)∂ lnD(z)

D(z)
,

(6.2.7)

where

D(z) =
F (p, q, p+ q, z)

Γ(p+ q)γ(1 − p)
− eiuaz1−p−qF (1 − p, 1 − q, 2 − p− q, z)

Γ(−p− q)γ(q)
, (6.2.8)
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and

z =
|z1 − z2|2
|z1 − z̄2|2

, x = (x1 − x2)(x̄1 − x̄2) . (6.2.9)

In this case

λ12 = −h1+h2−
h

3
+(1−p−̂1)(p+q)−(̂1+̂2)p−q , λ14 = 2h1−

h

3
+p q+(̂1+̂2)p−p .

(6.2.10)

We consider finally

〈Φ+
p,̂1

Φ0
s,̂2

〉a = 〈1〉a
√

π

sin πp

eipηa+i(̂1+̂2)u

1 − eiua
e
−px1x̄1− s√

2

(

x1x̄2+x̄1x2+
x1
x2

+
x̄1
x̄2

)

(6.2.11)

zh1−h
3
−p̂2(1 − z)s

2−h
3 e

s2

2
(ψ(p)+ψ(1−p)−2ψ(1))e−xa(z)−

b(z)
x

∑

n∈Z

[

xz−peiua
]n

,

where x = x2x̄2 and

a(z) =
s2

2p
F (p, 1, 1 + p, z) , b(z) =

s2

2(1 − p)
F (1 − p, 1, 2 − p, z) . (6.2.12)

We now turn to the four-point open string amplitudes. The cross ratio in this

case is z = t12t34
t13t24

. The first amplitude we consider is

An1,n2,s1,s2 ≡ 〈ψab(p,̂ab−n1)
(1)ψba(−p,̂ba+n2)

(2)ψaas1 (3)ψaas2 (4)〉 , p = pb − pa > 0 .

(6.2.13)

It describes the correlation between two open strings stretched between the branes

a and b and two open strings ending on the brane a. We obtain

An1,n2,s1,s2 = 〈1〉ae−px1x2− x1√
2

(

s1
x3

+
s2
x4

)

− x2√
2
(s1x3+s2x4)xn1−n2

3 (1 − w)κ12wκ14

[

s2 + s1xw
−p

√
2

]n1−n2

e
s21+s22

4
[2ψ(p)−2ψ(1)−π cot πpa]− s1s2

2

[

xa(w)
p

+ wb(w)
x(1−p)

+ π(cot πp+cot πpa)wp

x

]

[

π

sin πpa

]n1−n2+1

Ln1−n2
n2

[

π

2
(cot πp+ cot πpa)

(

s2
1 + s2

2 +
s1s2x

wp
+
s1s2u

p

x

)]

,(6.2.14)

where w = 1 − z and

a(w) = F (p, 1, 1 + p, w) , b(w) = F (1 − p, 1, 2 − p, w) . (6.2.15)

Moreover x = x4

x3
and

κ12 =
s2
1 + s2

2

2
− h

3
, κ14 = h1 −

h

3
− p̂4 . (6.2.16)

Another interesting amplitude is

An1,n2,n3,n4 ≡ 〈ψab(p,̂ab−n1)
(1)ψba(−p,̂ba+n2)

(2)ψab(p,̂ab−n3)
(3)ψba(−p,̂ba+n4)

(4)〉 , (6.2.17)
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which computes the correlation between four open strings stretched between the a

and the b branes. When n1 = n3 = n, n2 = n4 = m we can use the integral (H.9)

and the result is

An,m,n,m = e−p(x1x2+x3x4)(x1 − x3)
2(n−m)zκ12(1 − z)κ14

n!

m!

〈1〉a
sin πpa

[

sin πp

R−(z)

]2(n−m)+1

e
xpz−xp

2
−xz(1−z)∂ log c1(z)+

x sin πp sin πpa
πc1(z)R−(z) (6.2.18)

m
∑

l=0

(−1)l
Γ(m− l + 1/2)Γ(l + 1/2)

Γ(l + 1 + n−m)(m− l)!

[

R+(z)

R−(z)

]2l

L
2(n−m)
2l

[

−x sin πp sinπpa sin πpb
πR+(z)R−(z)

]

,

where

R±(z) = c1(z) sin πpb ± c1(1 − z) sin πpa , c1(z) = F (p, 1 − p, 1, z) . (6.2.19)

Moreover x = (x1 − x3)(x2 − x4) and

κ12 = h1 + h2 −
h

3
+ p2 + (2̂ab − n−m)p− p ,

κ14 = h1 + h4 −
h

3
+ p2 + (2̂ab − n−m)p− p . (6.2.20)

For theD2 branes we showed that theH4 boundary amplitudes can be considered

as generating functions for the open string amplitudes in models with intersecting

branes. In the case of the S1 branes one can show in exactly the same way that

the boundary amplitudes are generating functions for the open string amplitudes in

models with magnetized branes. For instance, the amplitude between the ground

states of the Ĥ4 representations, which can be easily extracted from (6.2.18), coin-

cides when pa = n = m = 0 with the amplitude computed in [90]. This result is not

surprising since the magnetized and the intersecting branes in toroidal compactifica-

tions are related by the operation of charge conjugation, as it is also the case for the

S1 and the D2 branes in the Nappi-Witten gravitational wave.

For the sake of completeness, we also present a correlator with one bulk and two

boundary vertex operators. There are four types of such correlators

〈Φ+ψabψba〉 , 〈Φ+ψaaψaa〉 , 〈Φ0ψabψba〉 , 〈Φ0ψaaψaa〉 , (6.2.21)

and the example we chose is

〈Φ+
p,̂ψ

ab
q,̂ab−n1

ψba−q,̂ba+n2
〉 = 〈1〉a

√

π

sin πp

[

π

sin πpa

]ν+1
eipηa+îua

1 − eiµua
e−px1x̄1−qx3x4(x1 − x3)

ν

zκ12(1 − z)κ14e
x

[

g1(z)+
(1−z)p−q

c1(z)B(z)

]

D(z)n2

B(z)n1+1
Lνn2

[

π sin πpb x(1 − z)p−q

sin πq sin πpaB(z)D(z)

]

. (6.2.22)
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The cross-ratio in this case is z = (z1−z̄1
t3−t4 and we have also defined

B(z) =

[

ψ(1 − pa) − ψ(q) − σ(p)

2
+
iπ

2
cot πp cot πpa

]

c1(z) − c2(z) ,

D(z) =

[

ψ(pa) − ψ(1 − q) − σ(p)

2
+
iπ

2
cot πp cot πpa

]

c1(z) − c2(z) ,(6.2.23)

and

κ12 = 2h1−
h

3
+p2+2̂1p−p , κ14 = h1+h4−

h

3
+pq−(̂ba+n2)p+ ̂1q−q . (6.2.24)

7. Annulus amplitudes

All the amplitudes we discussed so far, were defined on the disc. The consistency

conditions of a boundary CFT impose a constraint also on the one-point functions

of the boundary fields on the annulus. When the boundary field is the identity, this

additional constraint reduces to the Cardy constraint, which interchanges the two

equivalent interpretations of the annulus diagram. The first is the partition function

of the boundary CFT, when time is running along the boundary. The other is as

a tree-level amplitude for the propagation of the bulk states when time is running

perpendicular to the boundary. In this second case the boundary conditions are

specified by the introduction of two boundary states. Passing from one description

to the other requires an S modular transformation t 7→ 1/t, where t is the modulus

of the annulus.

The Cardy constraint has been at the origin of many important insights concern-

ing the operator content of a rational boundary CFT [74, 77, 79]. It has also been

exploited for the investigation of some non-compact models [42, 43, 44, 45, 46]. The

best way to analyze the annulus constraint is to introduce characters for the represen-

tations of the chiral algebra and study their modular transformations. This is a non

trivial problem for conformal σ-models describing non-compact curved space-times

or time-dependent branes [45, 46, 91, 92, 93].

The characters of a generic representation α of the affine Ĥ4 algebra are defined

as follows

ζα(z, v|τ) = trHα

[

qL0− c
24 e−2π(zJ0+vK0)

]

. (7.1)

For the Σw[V̂ ±
±p,̂] representations we have

ζ±p,̂;w(z, v|τ) = ∓iq
h±

p,̂;w+ w
2
(1+w)

η(τ)θ1(z|τ)
e−2πiz(̂∓w± 1

2)∓iπw±(p+w)v . (7.2)

Note that ζ+
p,̂;−1−w = ζ−1−p,̂;w, as required by (3.4). It is therefore convenient to

express everything in terms of the ζ+
p,̂;w characters, letting w ∈ Z. It is useful to

define

r = p+ w , t = ̂− 1 − r

2
− w , (7.3)
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and rewrite the character as

ζ+
p,̂;w(z, v|τ) = − ie−iπw

η(τ)θ1(z|τ)
e−2πiτrte−2πirv−2πiz(t− r

2) . (7.4)

We can derive the following S modular transformation

ζ+
p1,̂1,w1

(

z

τ
,
v

τ
| − 1

τ

)

= e−2πi vz
τ

∑

w2∈Z

∫ 1

0

dp2

∫ ∞

−∞
d̂2 S(p1,̂1,w1);(p2,̂2,w2) ζ

+
p2,̂2,w2

(z, v, τ) ,

(7.5)

where

S(p1,̂1,w1);(p2,̂2,w2) = e−iπ(w1−w2−1)e2πi(p2+w2)(̂1− 1−p1−w1
2

−w1)+2πi(p1+w1)(̂2− 1−p2−w2
2

−w2)

= e−iπ(w1−w2−1)e2πir1t2+2πit1r2 . (7.6)

The characters of the Σw[V̂ 0
s,̂] representations are

ζ0
s,̂;w(z|τ) =

q
s2

2

η4(τ)

∑

k∈Z

e2πik̂δ(z + wτ + k) , (7.7)

and they have the following modular transformation properties

ζ0
s1,̂1;w1

(

z

τ
| − 1

τ

)

=
∑

w2∈Z

∫ 1/2

−1/2

d̂2

∫ ∞

0

s2 ds2 S
0
(s1,̂1;w1);(s2,̂2;w2)

ζ0
s2,̂2;w2

(z|τ) , (7.8)

where

S0
(s1,̂1;w1);(s2,̂2;w2)

= 2πi e2πi(w2 ̂1+w1̂2) J0(2πs1s2) . (7.9)

Note that when s = 0, all the representations with ̂ ∈ R are inequivalent and their

base is one-dimensional. The corresponding characters are

ζ0
0,̂;w(z|τ) =

e−2πî(z+wτ)

η4(τ)
. (7.10)

The torus vacuum amplitude of the Nappi-Witten gravitational wave [39, 94]

can be expressed in terms of the Ĥ4 characters. The discrete series contribution to

the closed string partition function is given by

Z+−(τ, z; τ̄ , z̄) = Tr
[

qL0− c
24 e−2πzJ0 q̄L0− c

24 e−2πz̄J0
]

=

∫

d̂

∫ 1

0

dp

∞
∑

w∈Z

∣

∣ζ+
p,̂;w(z, τ)

∣

∣

2

=
1

|η θ1|2
∫

d̂

∫ 1

0

dp
∞

∑

w∈Z

e
2πτ2

[

(p+̂− 1
2)

2−(̂− 1
2
−w)

2
]

+4πImz(̂−w− 1
2) . (7.11)

Changing variable in each term of the sum l̂ = ̂− w − 1
2

and setting p̃ = p + w we

obtain

Z+− =
1

|η θ1|2
∫

dl̂

∫ ∞

−∞
dp̃ e2πτ2[(p̃+̂)2−̂2]+4πImẑ =

ie
2π

(Imz)2

τ2

2 τ2 |η θ1|2
, (7.12)
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where we performed the rotation p̃ → ip̃ in order to evaluate the gaussian integral.

Similarly the contribution of the type-0 characters is

Z0 = V2

∑

w∈Z

∫ 1/2

−1/2

d̂

∫ ∞

0

dss
∣

∣ζ0
s,̂;w(z|τ)

∣

∣

2
=

V2

4πτ2η4η̄4

∑

w,k∈Z

|δ(z+wτ+k)|2 , (7.13)

where V2 is the volume of the transverse plane. This additional volume factor is a

consequence of the fact that the states that belong to the continuous representations

can move freely in the transverse plane and their wave functions are only delta

function normalizable. On the other hand the discrete states are confined around

the origin of the transverse plane and have normalizable wave functions.

We turn now to the annulus amplitudes. In the closed channel they can be

constructed using suitable boundary states. In the open channel they encode the

spectrum of the open strings ending on the two given branes. We will display the

amplitudes in both channels and investigate how they are related by the S modular

transformation. In the following we will make several assumptions and formal manip-

ulations and the results we obtain even though apparently consistent are not rigorous

and we think that the modular properties of these amplitudes deserve further study.

We will use the short-hand notation ζα(z|τ) ≡ ζα and ζα(z/τ |−1/τ) ≡ ζ̃α. Boundary

states for the H4 WZW model 3 can be easily constructed using the bulk-boundary

couplings derived in section 5. The boundary state for a D2 brane localized at χ is

|χ〉〉 = 〈1〉χV 1/4
2

∑

̂=0,1/2

∫ ∞

0

dss χBs,̂|s, ̂; 0〉

= 〈1〉χV 1/4
2

∫ ∞

0

ds
[

cos(
√

2χs)|s, 0; 0〉+ i sin(
√

2χs)|s, 1/2; 0〉
]

. (7.14)

Here we have a factor of V
1/4
2 , since the boundary continuous representations corre-

spond to one-dimensional waves. The annulus amplitude in the closed string channel

for two branes localized at χ1 and χ2 then reads

Ãχ1χ2 = 〈1〉χ1〈1〉χ2V
1/2
2

∫ ∞

0

ds
∑

̂=0,1/2

χ1Bs,̂
χ2B∗

s,̂ ζ̃
0
s,̂ (7.15)

= 〈1〉χ1〈1〉χ2V
1/2
2

∫ ∞

0

ds
[

cos(
√

2χ1s) cos(
√

2χ2s)ζ̃
0
s,0;0+ (7.16)

+ sin(
√

2χ1s) sin(
√

2χ2s)ζ̃
0
s,1/2;0

]

.

On the other hand, since the spectrum of the BCFT contains all the Ĥ4 representa-

tions, the annulus amplitude in the open channel reads

Aχ1χ2 =
∞

∑

w=0

∫ 1

0

dp

∫ ∞

−∞
d̂ ζ+

p,̂;w + 2V
1/2
2

∑

w∈Z

∫ ∞

0

ds̃(w)

∫ 1/2

−1/2

d̂ ζ0
s,̂;w , (7.17)

3Boundary states for the H4 WZW model were also considered in the recent paper [95].
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where s̃2(w) = s2 +
[√

2σ(w)
2π

]2

. We introduced the quantity σ(w) = |χ1 − eiπwχ2| in

order to specify the domain of the integral in s. The contribution of the continuous

representation can also be written as

Aχ1χ2 = 〈1〉χ1〈1〉χ2V
1/2
2

∑

w∈Z

∫ ∞

√
2σ(w)
2π

dt

∫ 1/2

−1/2

d̂
t

√

t2 −
[√

2σ(w)
2π

]2
ζ0
t,̂;w . (7.18)

Note that the even and odd spectral-flowed continuous representations appear with

different ranges of integration in the partition function, a remnant after the Penrose

limit of the different density of the corresponding states for the AdS2 branes in AdS3

[73].

If we compute the modular transformation of the transverse annulus using the

S matrix in (7.9), we correctly reproduce the spectrum of the continuous represen-

tations in the direct annulus. It is less clear how the discrete contribution should

appear. By comparing the normalization of the annulus amplitude in the direct and

in transverse channel we can fix the one-point function of the identity. We have

〈1〉χ =
√

2 . (7.19)

The discussion for the S1 branes is similar. The boundary state for an S1 brane

labeled by (u, η) is

|u, η〉〉 = 〈1〉(u,η)
∞

∑

w∈Z

[

∫ 1

0

dp

∫ ∞

−∞
d̂ u,ηBp,̂;w|p, ̂, w〉 + V2

∫ 1/2

−1/2

d̂

∫ ∞

0

dss u,ηBs,̂;w|s, ̂, w〉
]

.

(7.20)

The bulk-boundary couplings with the identity are

u,ηBp,̂;w =

√

π

sin πp

e2i(p+w)η+iu(̂−w)+iπw

1 − eiu
, (7.21)

and we recall the relations u = 2π(q + a) and 2η = π(2q + 2l̂ − 1). The annulus

amplitude in the closed channel reads

Ã12 = 〈1〉a〈1〉b
∑

w∈Z

∫ 1

0

dp

∫ ∞

−∞
d̂

π

sin πp

e2i(p+w)(η1−η2)+i(̂−w)(u1−u2)

(1 − eiu1)(1 − e−iu2)
ζ̃+
p,̂;w

+ 〈1〉a〈1〉bV2

∑

w∈Z

∫ ∞

−∞
d̂

ei(̂−w)(u1−u2)+2iw(η1−η2)

16 sin2(u1/2) sin2(u2/2)
ζ̃0
0,̂;w , (7.22)

where we used the fact that ̂ ∈ R also for the continuous representations when s = 0.

In the previous expression we separated the contribution of the discrete and the con-

tinuous representations, which are weighted by different volume factors. In fact the

first term has to be considered as a regularized term without the divergences due

42



to the almost delocalized states in the transverse plane with p ∼ w, w ∈ Z and the

second term as the term containing all these divergences, since the continuous rep-

resentations capture the behavior of the discrete representations when p approaches

an integer value. What this means is that when manipulating the term containing

the discrete representations, whenever a constraint arises forcing to evaluate it at

the boundary of the interval 0 < p < 1, the corresponding contribution should be

discarded and only the contribution coming from the continuous representations in

the second term of (7.22) retained. Equivalently, we could keep only the first term in

(7.22) and take into account the divergent behavior of the integrand when p becomes

an integer. We will show in the following that both points of view lead to the same

result.

Let us transform the amplitude (7.22) to the open string channel using the S

matrix in (7.6), (7.9) writing for instance

ζ̃+
p,̂;w =

∑

a∈Z

∫ 1

0

dp

∫

d̂ S(p,̂;w);(q,l̂;a) ζ
+

q,l̂;a
. (7.23)

We perform first the integration over ̂ which gives the constraint

q + a =
u2 − u1

2π
. (7.24)

Let us suppose for the moment that u2 − u1 /∈ 2πZ so that only the discrete repre-

sentations contribute. We can recombine the integral over p and the sum over w in

a single integral over p̃ = p+ w

A12 = − 〈1〉a〈1〉be
i(u1−u2)

2

(1 − eiu1)(1 − e−iu2)

∫

dl̂

∫ ∞

−∞
dp̃

π

sin πp̃
eip̃(2η12+2π(l+q)−π)ζ+

q,l̂;a
. (7.25)

We now need a prescription to perform the integral over p̃. The prescription that

reproduces in the open channel the spectrum of the boundary operators is the fol-

lowing

p̃→ p̃+ (−1)aiǫ . (7.26)

Consider for instance the case a even. We can expand

π

sin π(p̃+ iǫ)
= −2πi

∞
∑

n=0

e2πip(n+ 1
2) , (7.27)

and then perform the integral over p̃ that gives the constraint

l̂ = −̂1 + ̂2 − n , n ∈ N . (7.28)

Therefore

A12 =
2πi〈1〉a〈1〉be

i(u1−u2)
2

(1 − eiu1)(1 − e−iu2)

∞
∑

n=0

ζ+
q,−̂1+̂2−n;a . (7.29)
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This is precisely the expected result for the annulus amplitude in the open string

channel. The reason is that when u2 − u1 = 2π(q + a) with 0 < q < 1 and

η2 − η1 = π(q + ̂), the open string spectrum only contains discrete spectral-flowed

representations

A12 =

∞
∑

n=0

ζ+
q,̂−n;a . (7.30)

From the comparison of the amplitudes in the open and closed string channel, we can

fix the last structure constants required for the complete solution of the boundary

H4 model, namely the one-point functions of the identity. We obtain

〈1〉u,η =

√

2

π
sin

(u

2

)

. (7.31)

When u2 − u1 = 2πk with k ∈ Z, the constraint (7.24) has two solutions,

q = 0, a = k and q = 1, a = k − 1. We have two options. The first is to think

as proposed before, that the term that contains the discrete representations is a

regularized term. In this case, it does not contribute while the term containing the

continuous representations after the modular transformation gives

A12 = − 2πi〈1〉a〈1〉be
i(u1−u2)

2

(1 − eiu1)(1 − e−iu2)

V2

sin2 u
2

∫ ∞

0

dss ζ0
s,̂2−̂1;k . (7.32)

This is the expected result, since whenever u2 − u1 = 2πk and η2 − η1 = π̂ the open

string states belong to the continuous spectral-flowed representations

A12 =
V2

sin2 u
2

∫ ∞

0

dss ζ0
s,̂;k . (7.33)

The second option is to think of the continuous representations as already in-

cluded in the divergent behavior of the discrete representations for p close to an

integer. It is instructive to derive (7.32) once more, adopting this point of view, and

to show explicitly its equivalence with the previous one. In this case, we have to

extract (7.32) from the integral over the discrete representations when the integrand

is evaluated at the extrema of the interval. Performing the same steps as before and

keeping both contributions q = 0, a = k and q = 1, a = k − 1, we obtain

A12 =
2πi〈1〉a〈1〉be

i(u1−u2)
2

(1 − eiu1)(1 − e−iu2)

∞
∑

n=0

(ζ+
0,−̂1+̂2−n;k − ζ+

1,−̂1+̂2+n;k−1) . (7.34)

Using the explicit form of the ζ+ characters and sending k → k + iǫ, the previous

expression can be rewritten as follows for ǫ ∼ 0

A12 =
2πi〈1〉a〈1〉be

i(u1−u2)
2

(1 − eiu1)(1 − e−iu2)

1

ǫτ

1

η4(τ)

∑

m∈Z

e2πi(̂2−̂1)mδ(z + kτ +m) . (7.35)
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We should now interpret the divergence 1/ǫ as due to the infinite volume of the

transverse plane (consistently with the power we have of the modular parameter

which is the one commonly associated with two non-compact directions)

lim
ǫ→0

1

ǫ
=

V2

sin2 u
2

= V open
2 , (7.36)

which is the volume measured using the open string metric [86]

G−1
op ≡ (gcl + F)−1gcl(gcl −F)−1 . (7.37)

In this way, we obtain again the amplitude displayed in (7.32).

As we mentioned earlier, our aim in this section is not to provide a rigorous

discussion of the modular transformation properties of the annulus amplitudes, but

rather to give a plausible suggestion about how the standard open-closed duality

should work for the branes of the H4 model.

7.1 Contraction of the BCFT

The Penrose limit that connects the Nappi-Witten gravitational wave and R × S3

or AdS3 × S1 can also be extended to the branes contained in these space-times, as

described in section 2. In [35] we gave a detailed description of the world-sheet equiv-

alent of the Penrose limit in space-time. This is the contraction of the R × SU(2)k
WZW model to the H4 WZW model. It is interesting to perform the same contrac-

tion for the boundary CFT. Here we shall comment on how the BCFT describing the

H4 branes arises as the limit of the BCFT describing the S2 branes in S3. We first re-

call how to derive the affine Ĥ4 characters from the contraction of the U(1)×SU(2)k
characters [35]. It is convenient to write the latter as follows

χkl =
∑

n∈Z

(

χ+
l,n + χ−

l,n

)

, (7.1.1)

where l is the spin of the representations and

χ±
l,n(z|τ) = ∓ 1

iθ1
e
2πi(k+2)

[

(n+ 2l+1
2(k+2))

2
τ∓(n+ 2l+1

2(k+2))z
]

. (7.1.2)

The U(1) characters are

ψQ(z|τ) =
e−2πiτ Q2

k
+2πizQ

η
. (7.1.3)

The characters of the original CFT become the H4 characters if we send the level

k to infinity and scale simultaneously the spin l and the charge Q in a correlated way

ψQ(−z − 2v/k|τ)χ±
l,n(z|τ) → ζα(z, v|τ) . (7.1.4)
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More precisely for the discrete representations we obtain

ψ−k(n+ p
2
)χ

+
l,n → ζ−p,−̂;2n , n ≥ 0 ,

ψ−k(−m+ p
2
)χ

+
l,−m → ζ+

1−p,−̂;2m−1 , m ≥ 1 ,

ψk(n+ p
2
)χ

−
l,n → ζ+

p,̂;2n , n ≥ 0 ,

ψk(−m+ p
2
)χ

−
l,−m → ζ−1−p,̂;2m−1 , m ≥ 1 , (7.1.5)

with l = k
2
p− ̂. The characters for the continuous representations require a different

scaling, namely

ψ−kn+̂

(

χ+
l,n + χ−

l,−n
)

→ ζ0
s,̂;−2n , n ∈ Z , l =

√

k

2
s (7.1.6)

ψ−k(n+1/2)+̂

(

χ+
l,n + χ−

l,−n−1

)

→ ζ0
s,̂;−2n−1 , n ∈ Z , l =

k

2
−

√

k

2
s .

In the following, we will only discuss the contraction involving the SU(2)k WZW

model. Similar relations however, can be written for the SL(2,R)k characters. The

boundary state for an S2 brane in S3 reads

|i, R〉〉 =

k
2

∑

l=0

Sil√
S0l

Dl
m,n(α, β, γ)|l,m, n〉 . (7.1.7)

Here, we are considering the general case where the gluing condition (2.7) also in-

volves the adjoint action of a group element R(α, β, γ) ∈ SU(2). The Dl
mn(α, β, γ)

are the matrix elements of R in the spin l representation and can be expressed in

terms of the Jacobi polynomials

Dl
mn(α, β, γ) = im−ne−i(n+m)α−i(n−m)βP l

mn(cos γ) . (7.1.8)

Finally Sil is the modular S matrix of the affine SU(2)k algebra

Sil =

√

2

k + 2
sin

[

π

k + 2
(2i+ 1)(2l + 1)

]

. (7.1.9)

Using the fact that for R = 1 the label i of the branes is related to the coordinate ψ

by

ψi =
π(2i+ 1)

k + 2
, i = 0, ...,

k

2
, (7.1.10)

we can derive the relation between the S1 brane parameters and the quantum num-

bers of the Ĥ4 representations that is inherited from the original relations between

the S2 brane parameters and the spin of SU(2). The results are summarized in the

following table. In the first column we listed the discrete H4 representations. In the
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second and in the third column we show the labels of the corresponding branes. Fi-

nally, in the fourth column, we list the U(1)×SU(2)k representations they originate

from in the Penrose limit

ζ+
p,̂,2n µu = 2π(µp+ 2n) 2η = π(2µp+ 2̂− 1) ψk(n+ p

2
) χ k

2
p−̂ ,

ζ+
p,̂,2m−1 µu = 2π(µp+ 2m− 1) 2η = −π(2µp+ 2̂− 1) ψk(m− 1−p

2 ) χ k
2
(1−p)+̂ ,

ζ−p,̂,2n µu = −2π(µp+ 2n) 2η = −π(2µp− 2̂− 1) ψ−k(n+ p
2
) χ k

2
p+̂ ,

ζ−p,̂,2m−1 µu = −2π(µp+ 2m− 1) 2η = π(2µp− 2̂− 1) ψ−k(m− 1−p
2 ) χ k

2
(1−p)−̂ .

In a similar fashion, one may show that the label χ of the D2 branes is related to

the label l of the original S2 brane by

l =
k

4
+
√
k
χ

2π
. (7.1.11)

We may now write down the annulus amplitudes for the brane configurations in

R×S3, whose Penrose limit is one of the branes in H4, as explained in section 2. We

will show that in the limit, the direct and the transverse annulus amplitudes become

the corresponding amplitudes for the H4 model we discussed in the previous section.

In order to do this, we have to first understand for each amplitude, how we can scale

the quantum numbers of the original representations and then restrict our attention

to states that have finite charges and conformal dimension in the limit.

For the D2 branes, we start with a brane with Neumann boundary conditions

along the time direction. The original annulus amplitude in the open string channel

is

Al1,l2 =

∫ ∞

−∞
dQ

min(l1+l2,k−l1−l2)
∑

l=|l1−l2|
ψQ χl . (7.1.12)

The brane labels have to be scaled in the limit as li = k
4
+

√
k

2π
χi, i = 1, 2 and therefore

the range of the possible SU(2)k representations is
√
k

2π
|χ1 − χ2| ≤ l ≤ k

2
−

√
k

2π
|χ1 + χ2| . (7.1.13)

Since there is a lower bound in the range of l, we have to slightly change the way we

scale the spin in the Penrose limit. For the representations ζ+
p,̂;2a we simply set

l =
k

2
p+

√
k
|χ1 − χ2|

2π
− ̂ , Q = −k

(

w +
p

2

)

+
√
k
|χ1 − χ2|

2π
, (7.1.14)

and similarly for all the other discrete representations. For the continuous represen-

tations, the lower bound in l shifts the lower bound for the integral in s. It is easy

to se that

s ≥ |χ1 − χ2|√
2π

, for ζ0
s,̂;2w , s ≥ |χ1 + χ2|√

2π
, for ζ0

s,̂;2w+1 . (7.1.15)
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We observe that the different behavior of the even and odd spectral-flowed continuous

representations, arises also in a very transparent way from the contraction of SU(2)k.

Note that the minimal conformal dimension for the vertex operators ψχ2χ1

s,̂;0 is h =
(χ1−χ2)2

2π2 , which can be ascribed to the tension of the string stretched between the two

branes, as expected. Since the original amplitude contains arbitrary U(1) charges,

in the limit we obtain an amplitude that contains all possible H4 representations

Aχ1χ2 ∼
∞

∑

w=0

∫ 1

0

dp

∫ ∞

−∞
d̂ [ζ+

p,̂;w + ζ−−p,̂;w] +
√

2V
1/2
2

∑

w∈Z

∫ ∞

0

ds̃

∫ 1/2

−1/2

d̂ ζ0
s,̂;w .

(7.1.16)

In the transverse channel we can reason in the same way. The original amplitude is

Ãl1l2 = ψ̃0

k/2
∑

l=0

Sl1lSl2l
S0l

χ̃l . (7.1.17)

Since now all the states have zero U(1) charge, according to (7.1.5-7.1.6) we can only

obtain in the limit the highest-weight continuous representations.

The discussion for the S1 branes is similar. We label the branes with their

position in time u and with the SU(2) spin l. In the open string channel, the

original amplitude is

A(u1,l1)(u2,l2) = ψu2−u1
4π

min(l1+l2,k−l1−l2)
∑

l=|l1−l2|
χl . (7.1.18)

We scale li = k
2
pi − ̂i, i = 1, 2. As before we have to distinguish two cases. When

u2 − u1 is not an integer multiple of 2π, we may write

u2 − u1

4π
= k

(

w +
p

2

)

, (7.1.19)

with 0 < p < 1. We then have to scale l as l = k
2
(p2 − p1)− ̂ and the possible values

of ̂ follow from the original range of l

̂2 − ̂1 ≥ ̂ ≥ −∞ , (7.1.20)

in integer steps and therefore ̂ = ̂2− ̂1−n, n ∈ N, as expected. On the other hand,

when u2 −u1 = 2π(kw− ̂), we may use the relations (7.1.6). In the limit, we obtain

an annulus amplitude that only involves the continuous representations.

In the closed string channel, the original amplitude is

Ã(u1,l1)(u2,l2) =

∫ ∞

−∞
dQ eiQ(u2−u1)ψ̃Q

k/2
∑

l=0

Sl1lSl2l
S0l

χ̃l . (7.1.21)

As in the amplitude (7.1.12), we have again arbitrary U(1) charges. We thus obtain

in the limit all possible H4 representations. Therefore, the annulus amplitudes, both
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in the closed and in the open string channel, reproduce in the limit the results we

expect for the D2 and the S1 branes. It would be very interesting to pursue this line

of thinking, in order to gain a more detailed understanding of the contraction of the

boundary CFT.

8. The DBI approach

We will study here the DBI approach for the branes described in this paper. This

approach although in most cases approximate, has the advantage of an obvious geo-

metric interpretation. We will also be able to provide an independent confirmation

of the spectrum of fluctuations for the H4 branes and justify some of the assumptions

made during the solution of the BCFT. In the bosonic case the lowest state is the

tachyon. In anticipation of the supersymmetric case we will use the bosonic part

of the supersymmetric DBI action that describes the dynamics of the “massless”

modes. To simplify the formulae, we use here the background (2.1,2.2) with µ = 2

so that the metric and antisymmetric tensor read

ds2 = −2dudv − r2du2 + dr2 + r2dθ2 , Brθ = 2ur . (8.1)

We can put back µ by rescaling u→ µu/2, v → 2v/µ.

8.1 The S1 branes and the spectrum of their fluctuations

We will find a class of solutions to the DBI equations that will contain as special

cases the S1 branes discussed in this paper. The S1 will have Dirichlet boundary

conditions on the u, v coordinates. We choose a static gauge where the brane world-

volume is parameterized by r, θ. The induced metric and antisymmetric tensor is

ĝrr = 1 − 2u′v′ − r2u′2 , ĝθθ = r2 − r2u̇2 − 2u̇v̇ , (8.1.1)

ĝrθ = −u′v̇ − u̇v′ − r2u′u̇ , B̂rθ = 2ur . (8.1.2)

In the formulae above, a dot stands for a θ derivative and a prime for an r derivative.

We can directly evaluate the Nambu-Goto-Dirac-Born-Infeld Lagrangian as

L =

√

det(ĝ + B̂ + F ) =
√

ĝrrĝθθ − ĝ2
rθ + (2ur + Frθ)2 , (8.1.3)

where Frθ is the world-volume gauge field strength. The equations of motion for the

gauge field can be integrated to

2ur + Frθ
L

=
E

2
→ 2ur + Frθ =

Er√
4 − E2

√
1 − 2u′v′ − r2u′2 , (8.1.4)

where E is a constant (the “electric field”). The u, v equations are

∂θ
(r2u̇+ v̇)ĝrr − (r2u′ + v′)ĝrθ

L
+ ∂r

−(r2u̇+ v̇)ĝrθ + (r2u′ + v′)ĝθθ
L

= −Er , (8.1.5)
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∂θ
u̇ĝrr − u′ĝrθ

L
− ∂r

u̇ĝrθ − u′ĝθθ
L

= 0 . (8.1.6)

We will from now on consider a rotationally invariant ansatz. Dropping θ-derivatives

the equations simplify to

(r2u′ + v′)ĝθθ = (−1

2
Er2 + A)L , u′ĝθθ =

B

2
L , (8.1.7)

with A,B integration constants and L from (8.1.3) given by

L =
2r√

4 − E2

√
1 − 2u′v′ − r2u′2 . (8.1.8)

Massaging (8.1.7,8.1.8) we obtain

r2u′2 =
B2

4 − E2
(1 − 2u′v′ − r2u′2) , r2 +

v′

u′
=

−Er2 + 2A

B
, (8.1.9)

v′ =
2A− (B + E)r2

B
u′ , u′2 =

B2

(4 − (B + E)2)r2 + 4AB
. (8.1.10)

We will look here for solutions where u is a constant corresponding to the symmetric

S1 branes discussed in this paper. u =constant implies that B = 0 and

v′ =

(

−1

2
Er +

A

r

)

2√
4 −E2

⇒ v = v0 −
Er2

2
√

4 −E2
+

2A√
4 −E2

log r . (8.1.11)

Since the class variable is ξ = 2v sin u − r2 cosu, we learn that the symmetric S1

branes have also A = 0. Comparison with (2.12) and (2.14) gives

cot u0 = − E√
4 − E2

, ξ = 2v0 sin u0 . (8.1.12)

The fluctuations around the classical embedding are in one-to-one correspondence

with on-shell open marginal deformations. Although for a single S1 brane this is not

very rich, it is still useful to verify it explicitly. The richer case of two branes at a

non-zero distance in light-cone is much harder to analyse and we will not do it here.

In appendix (F) we analyse the action for the fluctuations u, V, F around the S1

solution that turns out to be

L2 =

√
4 −E2

16r

[

−(4 −E2)

(

F +
8ur

4 − E2

)2

+ 8(u̇V̇ + r2u′V ′) + 32
r2u2

4 −E2

]

.

(8.1.13)

The equations of motion that ensue are

2u = 0 ⇒ 1

r
(ru′)′ +

1

r2
ü = 0 , (8.1.14)

2V =
1

r
(rV ′)′ +

1

r2
V̈ = − 4

4 −E2
(2u+ C) , (8.1.15)
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with the gauge field satisfying

F + 2ur − E2

4 −E2
r2u′ =

2C

(4 −E2)
r (8.1.16)

with C a constant.

The regular solution of (8.1.14) is u = u0 constant. On the other hand, the

solution of (8.1.15) is

V = V0 −
2u0 + C

4 − E2
r2 (8.1.17)

In order to be regular at r = ∞, the electric field fluctuation and the u fluctuation

must be related by

C = −2u0 . (8.1.18)

This is indeed implied by (8.1.12). In the non-symmetric case where (8.1.12) is no

longer valid, (8.1.18) must still be in effect for the fluctuations to be continuum

normalizable and thus physical states of the theory.

The two physical states obtained correspond to K−1|s = 0 > and J−1|s = 0 > in

the bosonic case and ψK− 1
2

|s = 0 > and ψJ− 1
2

|s = 0 > in the supersymmetric case [96]

in accordance with the BCFT discussion. Note that here, unlike the D-brane case,

including the contribution of the additional coordinates of the ten-dimensional string

theory does not change our results. The reason is that the world-sheet is Euclidean

and the physical states conditions are very restrictive, implying the vanishing of all

momenta.

8.2 The D2 branes and the spectrum of their fluctuations

The cartesian coordinates on the plane (x, y) are more convenient here. The metric

and antisymmetric tensor read

ds2 = −2dudv − (x2 + y2)du2 + dx2 + dy2 , Bxy = 2u . (8.2.1)

Putting Dirichlet boundary conditions on y we obtain the following induced metric

dŝ2 = (−x2−y2+y2
u)du

2+y2
vdv

2−2(1−yuyv)dudv+2yuyxdudx+2yvyxdvdx+(1+y2
x)dx

2 ,

(8.2.2)

while

B̂ = 2u(yudx ∧ du+ yvdx ∧ dv) . (8.2.3)

The action is

SD2 =

∫

dxdudv
√

1 + L2 , (8.2.4)

with

L2 = −2yuyv + (x2 + y2)(y2
v + (−2uyv + Fvx)

2) + y2
x − 2(−2uyu + Fux)(−2uyv + Fvx)

(8.2.5)
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−F 2
vxy

2
u − F 2

uv(1 + y2
v) + 2FuxFvxyuyv + F 2

uxy
2
v + 2FuvFuxyvyx − 2FuvFvxyuyx .

We will now search for solutions where the D2 brane is sitting at y = y0 constant

that contain the symmetric D2 solutions studied in this paper.

Setting y = y0 we obtain the following equations to be solved

∂u
Fuv
L

+ ∂x

[

(y2
0 + x2)

Fvx
L

− Fux
L

]

= 0 , (8.2.6)

∂u
Fvx
L

− ∂v

[

(y2
0 + x2)

Fvx
L

− Fux
L

]

= 0 , (8.2.7)

∂v
Fuv
L

+ ∂x
Fvx
L

= 0 , (8.2.8)

with

L =
√

1 − F 2
uv − 2FuxFvx + (x2 + y2

0)F
2
vx , (8.2.9)

while the y equation gives4

Fvx = 0 . (8.2.10)

Equations (8.2.6-8.2.8) are then solved by

Fuv = fuv = constant , Fux = −y0 + fux = constant . (8.2.11)

The symmetric solution corresponds to fux = fuv = 0. The gauge field can be

dualized to a scalar here as follows

Fuv
L

= ∂xA ,
Fux
L

= ∂uA− (y2
0 + x2)∂vA ,

Fvx
L

= −∂vA . (8.2.12)

Solving for the gauge field strength we obtain

Fuv =
∂xA

L̂
, Fux =

∂uA− (x2 + y2
0)∂vA

L̂
, Fvx = −∂vA

L̂
. (8.2.13)

Such expressions solve equations (8.2.6)-(8.2.7) but now the Bianchi identity gives

∂x
∂xA

L̂
− ∂u

∂vA

L̂
+ ∂v

−∂uA + (x2 + y2
0)∂vA

L̂
= 0 , (8.2.14)

where

L̂ =
√

1 − 2∂uA∂vA+ (∂xA)2 + (x2 + y2
0)(∂vA)2 . (8.2.15)

Using (8.2.10), (8.2.14) becomes

∂x
∂xA

L̂
= 0 , ∂vA = 0 . (8.2.16)

4There is another possibility here, namely Fvx = −2/y0 , but this does not correspond to a

symmetric solution.
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Thus the A corresponding to our previous solution is

A =
fuv x+ (fux − y0)u

√

1 − f 2
uv

. (8.2.17)

We will now study the spectrum of fluctuations around the simplest solution y = y0,

Fvx = Fuv = 0, Fux = −y0. Setting y → y0 + y, Fvx → Fvx, Fuv → Fuv, Fux →
−y0 + Fux and expanding the action to quadratic order we obtain

S2 =
1

2

∫

[

−2∂uy∂vy + (∂xy)
2 + x2(∂vy)

2 − F 2
uv + x2(Fvx − 2uyv)

2− (8.2.18)

−2(Fux − 2uyu)(Fvx − 2uyv)] .

The ensuing equations of motion are

2∂u∂vy − ∂2
xy − x2∂2

vy − 2(Fvx − 2uyv) = 0 , (8.2.19)

∂uFuv + ∂x[x
2(Fvx − 2uyv) − Fux + 2uyu] = 0 , (8.2.20)

∂u(Fvx − 2uyv) − ∂v[x
2(Fvx − 2uyv) − Fux + 2uyu] = 0 , (8.2.21)

∂vFuv + ∂x(Fvx − 2uyv) = 0 . (8.2.22)

Introducing a dual scalar field A by

Fuv = ∂xA , Fux = 2uyu + ∂uA− x2∂vA , Fvx = −∂vA + 2uyv , (8.2.23)

the equations read

2A = 2yv , 2y = −2∂vA , (8.2.24)

where

2 = 2∂u∂v − ∂2
x − x2∂2

v . (8.2.25)

In terms of the dual variable, the quadratic action can be written as

S2 =

∫

dudvdx

[

1

2
A�A +

1

2
y�y − 2A∂vy

]

. (8.2.26)

Defining a new complex scalar field as Φ = (A+ iy)e−iu we find

S2 =

∫

dudvdx

[

1

4
Φ∗

�Φ +
1

4
Φ�Φ∗

]

. (8.2.27)

Thus, Φ is a massless scalar. Its solutions are in one-to-one correspondence with the

discrete and the continuous representations in accordance with the BCFT discussion.

Since here the world-volume has Minkowski signature it is the eigenvalues of the

Laplacians that are relevant when we include 6 extra flat coordinates in order to

study strung theory in the H4 × R
6 background. Thus we need to solve

�Φ = EΦ . (8.2.28)
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We parameterize,

Φ = eip−u+ip+vz , (8.2.29)

and z satisfies the harmonic oscillator equation

[

−∂2
x + p2

+x
2
]

z = (2p+p+E)z , (8.2.30)

with quantized values of p−. For p+ = 0 the equation becomes

∂2
xz = −Ez , (8.2.31)

and the solutions for z are plane waves in one dimension.

Thus, the spectrum is in agreement with the BCFT findings in section 4.

9. Conclusions and generalizations

In this paper we provided the complete solution for the BCFT pertaining to the two

classes of symmetric branes of the H4 model, the D2 and the S1 branes. In both

cases we solved the consistency BCFT conditions [75, 76] and obtained the BCFT

data, namely the bulk-boundary and the three-point boundary couplings.

The bulk-boundary couplings for the D2 branes can be found in Eq. (5.1.6)

and (5.1.8) while the three-point boundary couplings are in Eq. (5.1.11), (5.1.15),

(5.1.21) and (5.1.23). The bulk-boundary couplings for the S1 branes are in Eq.

(5.2.7) while the boundary three-point couplings can be found in Eq. (5.2.22) (5.2.25)

and (5.2.27). To our knowledge, with the notable exception of the Liouville model

[40, 41, 47, 48, 49], this is the first complete tree-level solution of D-brane dynamics

in a curved non-compact background.

Our solution of the H4 model with and without a boundary should help to

clarify the properties of the non-compact WZW models and the closed and open

string dynamics in curved space-times. Among other results we provided the first

example of structure constants for twisted symmetric branes in a WZW model (the

D2 branes) and of open four-point functions in a curved background.

There are two aspects of our work we think deserve further study. The first

is to perform a more detailed analysis of the four-point amplitudes and the second

to clarify the relation between the open and closed string channel of the annulus

amplitudes. There are also several other issues it would be worth pursuing and we

mention here a few. One is the study of the symmetric branes of the other WZW

models based on the Heisenberg groups H2+2n, n ≥ 2. Their generators satisfy the

following commutation relations

[P+
i , P

−
i ] = −2iµiK , [J, P±

i ] = ∓iµiP±
i , (9.1)

with i = 1, ..., n. It will be interesting to generalize our results to the higher dimen-

sional analogues of the D2 and the S1 branes as well as to extend them to encompass
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other classes of symmetric branes. In fact whenever two or more of the µi parameters

in (9.1) coincide, the higher dimensional Heisenberg algebras have additional outer

automorphisms which permute the corresponding pairs of P±
i generators. The exis-

tence of additional outer automorphisms parallels the enhancement of the isometry

group of these pp-wave backgrounds when some of the µi parameters coincide [36].

As a consequence these models display a richer set of symmetric branes, some of

them similar to the oblique branes discussed in [54, 52, 72].

It should also be possible to study less symmetric branes which can be obtained

by performing a T -duality along the Cartan torus, following [97]. Also the supersym-

metric H2n+2 WZW models should be analyzed and brane configurations preserving

some or none of the bulk supersymmetries. An interesting brane is the H4 brane

in the H6 gravitational wave [58, 59], the Penrose limit of the AdS2 × S2 brane

in AdS3 × S3. The dynamics of the open strings ending on this brane should be

described by a direct generalization of our results for the D2 branes.
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Appendices

A. Ĥ4 representations

The Heisenberg group H4 has three types of unitary representations.

1) Lowest-weight representations V +
p,̂, where p > 0. They are constructed start-

ing from a state |p, ̂〉 which satisfies P+|p, ̂〉 = 0, K|p, ̂〉 = ip|p, ̂〉 and J |p, ̂〉 =

î|p, ̂〉. The spectrum of J is given by {̂+ n}, n ∈ N and the value of the Casimir

is C = −2p̂+ p .

2) Highest-weight representations V −
p,̂, where p > 0. They are constructed

starting from a state |p, ̂〉 which satisfies P−|p, ̂〉 = 0, K|p, ̂〉 = −ip|p, ̂〉 and

J |p, ̂〉 = î|p, ̂〉. The spectrum of J is given by {̂− n}, n ∈ N and the value of the

Casimir is C = 2p̂ + p. The representation V −
p,−̂ is the representation conjugate to

V +
p,̂.

3) Continuous representations V 0
s,̂ with p = 0. These representations are char-

acterized by K|s, ̂〉 = 0, J |s, ̂〉 = î|s, ̂〉 and P±|s, ̂〉 6= 0. The spectrum of J is

then given by {̂ + n}, with n ∈ Z and |̂| ≤ 1
2
. The value of the Casimir is C = s2.

The one dimensional representation can be considered as a particular continuous

representation, where the charges s and ̂ are zero.

For the study of the H4 WZW model, three types of highest-weight representa-

tions of the affine Ĥ4 algebra will be relevant. Affine representations V̂ ±
p,̂ based on

V ±
p,̂ representations of the horizontal algebra, with conformal dimension

h = ∓p̂+
p

2
(1 − p) , (A.1)

and affine representations V̂ 0
ŝ based on V 0

ŝ representations, with conformal dimension

h =
s2

2
. (A.2)

Highest-weight representations of the current algebra lead to a string spectrum free

from negative norm states only if they satisfy the constraint

0 < p < 1 . (A.3)

States with larger values of p belong to new representations resulting from spectral

flow of the original highest-weight representations [31, 38]. In fact the spectral-

flowed representations are highest-weight representations of an isomorphic algebra

whose modes are related to the original ones by

P̃+
n = P+

n−w , P̃−
n = P−

n+w , J̃n = Jn ,

K̃n = Kn − iwδn,0 , L̃n = Ln − iwJn . (A.4)
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An important piece of information for understanding the structure of the three-

point couplings is provided by the decomposition of the tensor products of the H4

representations

V +
p1,̂1

⊗ V +
p2,̂2

=
∞

∑

n=0

V +
p1+p2,̂1+̂2+n

,

V +
p1,̂1

⊗ V −
p2,̂2

=

∞
∑

n=0

V +
p1+p2,̂1+̂2−n , p1 > p2 ,

V +
p1,̂1

⊗ V −
p2,̂2

=

∞
∑

n=0

V −
p1+p2,̂1+̂2+n

, p1 < p2 ,

V +
p ,̂1

⊗ V −
p ,̂2

=

∫ ∞

0

sdsV 0
s,̂1+̂2

,

V +
p1,̂1

⊗ V 0
s,̂2 =

∞
∑

n=−∞
V +
p1+p2,̂1+̂2+n

. (A.5)

The fusion rules for the primary vertex operators of the H4 model can be obtained

from the previous tensor products. When the representations involved are spectral-

flowed representations, one has to use the relation [98]

Σw1 [Φα1 ] ⊗ Σw2 [Φα2 ] = Σw1+w2[Φα1 ⊗ Φα2 ] . (A.6)

B. Fusing matrices

Consider the correlator 〈ϕi(z1)ϕj(z2)ϕk(z3)ϕl(z4)〉 and let F ijkl
p (z) denote the con-

formal blocks in the s-channel z1∼z2 and F lijk
q (1 − z) the conformal blocks in the

u-channel z1∼z4, where z = z12z34
z13z24

. We use the following convention for the fusing

matrices

F ijkl
p (z) =

∑

q

Fpq

[

j k

i l

]

F lijk
q (1 − z) . (B.1)

Fpq defines a linear transformation

Fpq

[

j k

i l

]

: V i
jp ⊗ V p

kl → V i
ql ⊗ V q

jk , (B.2)

where V i
jk is the space of the three-point couplings. Moreover,

∑

q

Fpq

[

j k

i l

]

Fqr

[

l k

i j

]

= δr,s . (B.3)

Since in our non-compact CFT the conformal blocks are labeled either by discrete

or continuous indexes, in the previous expressions we will have a sum or an integral,
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according to the case. The following are the fusing matrices we used in section 5 to

compute the structure constants. We set ν = −∑4
i=1 ̂i. For correlators of the form

〈+ + +−〉 we have

F(p1+p2,̂1+̂2+n),(p1−p4,̂1+̂4+m)

[

(−p4, ̂4) (p1, ̂1)

(p3, ̂3) (p2, ̂2)

]

=

(ν − n)!

m!Γ(ν − n−m+ 1)

[

Γ(p2 + p3)Γ(p1 + p2)

Γ(p2)Γ(p4)

]ν [

Γ(p2)Γ(p4)

γ(p1 + p2)Γ(1 − p1)Γ(p3)

]n

[

Γ(p2)Γ(p4)

γ(p2 + p3)Γ(p3)Γ(1 − p1)

]m

F (−n,−m, ν − n−m+ 1,−θ) , (B.4)

where

θ =
sin πp2 sin πp4

sin πp1 sin πp3
. (B.5)

For correlators of the form 〈+ − +−〉 we have

F(p1−p2,̂1+̂2−n),(p1−p4,̂1+̂4−m)

[

(−p4, ̂4) (p1, ̂1)

(p3, ̂3) (−p2, ̂2)

]

=

(m+ n+ ν)!

m!(m+ ν)!

[

γ(p1 − p2)Γ(p2)Γ(1 − p4)

Γ(p1)Γ(1 − p3)

]n [

Γ(p2)Γ(1 − p4)

γ(p2 − p3)Γ(p3)Γ(1 − p1)

]m

[

Γ(p2)Γ(1 − p4)

Γ(1 − p1 + p2)Γ(p2 − p3)

]ν+1

F (−n,−m,−n −m− ν, θ) , (B.6)

where

θ =
sin πp2 sin πp4

sin πp1 sin πp3
. (B.7)

F(s,{̂1+̂2}),(p−q,̂1+̂4−n)

[

(−q, ̂4) (p, ̂1)

(q, ̂3) (−p, ̂2)

]

=
1

(n+ ν)!

[

Γ(p)Γ(1 − q)

Γ(p− q)

]ν+1

[

γ(p)

γ(q)γ(p− q)

]n [

s2

2

]
ν
2

e−
s2

2
(ψ(p)+ψ(1−q)−2ψ(1))Lνn

[

s2

2
(πctgπq − πctgπp)

]

.(B.8)

F(p−q,̂1+̂4−n),(s,{̂3+̂4})

[

(−p, ̂2) (p, ̂1)

(q, ̂3) (−q, ̂4)

]

= n!

[

Γ(q)Γ(1 − p)

Γ(1 − p+ q)

]ν+1

[

γ(q)γ(p− q)

γ(p)

]n [

s2

2

]
ν
2

e
s2

2
(ψ(q)+ψ(1−p)−2ψ(1))Lνn

[

s2

2
(πctgπq − πctgπp)

]

.(B.9)

F(s,{̂1+̂2}),(t,{̂1+̂4})

[

(−p, ̂4) (p, ̂1)

(p, ̂3) (−p, ̂2)

]

=
π

sin πp
e

t2−s2

2
(ψ(p)+ψ(1−p)−2ψ(1))Jν

(

πst

sinπp

)

.

(B.10)
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Similar expressions hold for correlators of the form 〈+ + −−〉.

F(p1+p2,̂1+̂2+n),(p1−p4,̂1+̂4−m)

[

(−p4, ̂4) (p1, ̂1)

(−p3, ̂3) (p2, ̂2)

]

=

(m+ n+ ν)!

m!(m+ ν)!

[

Γ(p1)Γ(p3)

γ(p1 + p2)Γ(1 − p2)Γ(1 − p4)

]n−ν [

Γ(p1)Γ(p3)

γ(p3 − p2)Γ(p2)Γ(p4)

]m

[

Γ(p1)Γ(p3)

Γ(p1 + p2)Γ(p3 − p2)

]ν+1

F (−n+ ν,−m,−n−m, θ) , (B.11)

where

θ =
sin πp1 sin πp3

sin πp2 sin πp4
. (B.12)

F(s,{̂1+̂2}),(p+q,̂1+̂4+n)

[

(−p, ̂4) (p, ̂1)

(−q, ̂3) (q, ̂2)

]

= (n− ν)!

[

Γ(p)Γ(q)

Γ(p+ q)

]ν+1

(B.13)

[

γ(p)

γ(q)γ(p+ q)

]n−ν [

s2

2

]
ν
2

e
s2

2
(ψ(p)+ψ(q)−2ψ(1))Lνn

[

s2

2
(πctgπp+ πctgπq)

]

.

F(p+q,̂1+̂2+n),(s,{̂3+̂4})

[

(q, ̂2) (p, ̂1)

(−q, ̂3) (−p, ̂4)

]

=
1

n!

[

Γ(1 − q)Γ(1 − p)

Γ(1 − p− q)

]ν+1

(B.14)

[

γ(p+ q)

γ(p)γ(q)

]n−ν [

s2

2

]
ν
2

e−
s2

2
(ψ(1−q)+ψ(1−p)−2ψ(1))Lνn−ν

[

s2

2
(πctgπp+ πctgπq)

]

.

For correlators of the form 〈+ − 00〉 we have

F(s,{̂1+̂2}),(p,̂1+̂4+n)

[

(s4, ̂4) (p, ̂1)

(s3, ̂3) (−p, ̂2)

]

= e
− s3s4

2
cosϕσ(p)+

iπs3s4 sin ϕ

2 tan πp
−inϕ+iην

, (B.15)

F(p,̂1+̂4+n)(s,{̂1+̂2})

[

(−p, ̂2) (p, ̂1)

(s3, ̂3) (s4, ̂4)

]

=
1

πs3s4 sin ϕ
e

s3s4
2

cosϕσ(p)− iπs3s4 sin ϕ

2 tan πp
+inϕ−iην

,

(B.16)

where σ(p) = ψ(p) + ψ(1 − p) − 2ψ(1), s2 = s2
3 + s2

4 + 2s3s4 cosϕ and eiη = s3+s4eiϕ

s
.

C. Bases of conformal blocks

In this appendix we collect various bases of conformal blocks for correlators of the

form 〈+ − +−〉, 〈+ + −−〉 and 〈+ − 00〉. Using the global conformal and H4 sym-

metries, the four-point amplitudes can be written as follows

A4(zi, xi; z̄i, x̄i) =

4
∏

j>i=1

|zij |2hi+2hj− 2h
3 K(xi)K̄(x̄i)

∑

n

Fn(z)F̄n(z̄) . (C.1)
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The kinematical functions K and K̄ are completely fixed by the Ward identities of the

left and right Ĥ4 algebras and we chose the standard gauge for the global conformal

transformations. The conformal blocks Fn(z, x) thus depend only on the cross-ratio

z = z12z34
z13z24

and a suitable combination x of the four charge variables. In the following

ν = −
∑4

i=1 ̂i. Consider first the correlator

〈Φ+
p1,̂1

(z1, z̄1, x1, x̄1)Φ
+
p2,̂2

(z2, z̄2, x2, x̄2)Φ
+
p3,̂3

(z3, z̄3, x3, x̄3)Φ
−
p4,̂4

(z4, z̄4, x4, x̄4)〉 .
(C.2)

The H4 Ward identities require

p1 + p2 + p3 = p4 , (C.3)

and give the function K

K(xi) = e−x4(p1x1+p2x2+p3x3)(x3 − x1)
ν , (C.4)

as well as the invariant combination

x =
x2 − x1

x3 − x1
. (C.5)

We set F = zκ12(1 − z)κ14F (z, x) where

κ12 = h1 + h2 −
h

3
− p1p2 − ̂2p1 − ̂1p2 ,

κ14 = h1 + h4 −
h

3
+ p1p4 − ̂4p1 + ̂1p4 − p1 + ν(p2 + p3) . (C.6)

We then arrive at the following form for the KZ equation

∂zF (z, x) =
1

z
[− (p1x+ p2x(1 − x)∂x) − νp2x]F (z, x)

− 1

1 − z
[(1 − x)(p2x+ p3)∂x − νp2(1 − x)]F (z, x) . (C.7)

The correlator vanishes when ν < 0. In the s-channel we have the Φ+
p1+p2,̂1+̂2+n

representations with 0 ≤ n ≤ ν. The conformal blocks are

Fn(z, x) = fn(z, x)(g(z, x))ν−n , (C.8)

where

f(z, x) =
p3

1 − p1 − p2
z1−p1−p2ϕ0(z) − xz−p1−p2ϕ1(z) ,

g(z, x) = γ0(z) −
xp2

p1 + p2

γ1(z) , (C.9)

60



and

ϕ0(z) = F (1 − p1, 1 + p3, 2 − p1 − p2, z) ,

ϕ1(z) = F (1 − p1, p3, 1 − p1 − p2, z) ,

γ0(z) = F (p2, p4, p1 + p2, z) ,

γ1(z) = F (1 + p2, p4, 1 + p1 + p2, z) . (C.10)

In the u-channel we have the representations Φ−
p4−p1,̂1+̂2−m, 0 ≤ m ≤ ν and their

conformal blocks read

Fm(u, x) = f̃ ν−m(u, x)(g̃(u, x))m , (C.11)

where

f̃(u, x) = u−p2−p3(ϕ̃0(u) − xϕ̃1(u)) ,

g̃(z, x) =
p3

p2 + p3
γ̃0(u) +

xp2

p2 + p3
γ̃1(u) , (C.12)

and

ϕ̃0(u) = F (p1,−p3, 1 − p2 − p3, u) ,

ϕ̃1(u) = F (1 − p3, p1, 1 − p2 − p3, u) ,

γ̃0(u) = F (p2, p4, 1 + p2 + p3, u) ,

γ̃1(u) = F (1 + p2, p4, 1 + p2 + p3, u) . (C.13)

Consider now the correlator

〈Φ+
p1,̂1

(z1, z̄1, x1, x̄1)Φ
−
p2,̂2

(z2, z̄2, x2, x̄2)Φ
+
p3,̂3

(z3, z̄3, x3, x̄3)Φ
−
p4,̂4

(z4, z̄4, x4, x̄4)〉 .
(C.14)

The H4 Ward identities require

p1 + p3 = p2 + p4 , (C.15)

and give the function K

K(xi) = e−p2x1x2−p3x3x4−(p1−p2)x1x4(x1 − x3)
ν . (C.16)

In this case the invariant combination is

x = (x1 − x3)(x2 − x4) . (C.17)

We set F = zκ12(1 − z)κ14F (z, x) where

κ12 = h1 + h2 −
h

3
+ p1p2 − ̂2p1 + ̂1p2 − p2 ,

κ14 = h1 + h4 −
h

3
+ p1p4 − ̂4p1 + ̂1p4 − p4 . (C.18)
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We then arrive at the following form for the KZ equation

z(1 − z)∂zF (z, x) =
[

x∂2
x + ((p1 − p2)x+ 1 + ν) ∂x

]

F (z, x)

+ z [−(p1 + p3)x∂x + xp2p3 − (1 + ν)p3]F (z, x) . (C.19)

When p1 > p2 in the s-channel we have Φ+
p1−p2,̂1+̂2−n with n ≥ 0 for ν ≥ 0 and

n = m− ν with m ≥ 0 for ν ≤ 0. The conformal blocks are

Fn(z, x) = νn
exg1(z)

(f1(z))1+ν
Lνn(xγψ(z))ψ(z)n , n ∈ N , (C.20)

where Lνn is the n-th generalized Laguerre polynomial,

ψ(z) =
f2(z)

f1(z)
, γψ(z) = −z(1 − z)∂ lnψ , νn =

n!

(p1 − p2)n
,

g1(z) = zp3 − z(1 − z)∂ ln f1 , (C.21)

and

f1(z) = F (p3, 1 − p1, 1 − p1 + p2, z) ,

f2(z) = zp1−p2F (p4, 1 − p2, 1 − p2 + p1, z) . (C.22)

When p1 < p2, the intermediate states belong to the Φ−
p2−p1,̂1+̂2+n representation

with n = m + ν with m ≥ 0 for ν ≥ 0 and n ≥ 0 for ν ≤ 0. The conformal

blocks are very similar. Finally when p1 = p2 = p and p3 = p4 = q the intermediate

representation is Φ0
s,̂ and the conformal blocks read

Fs(z, x) =
exg1(z)

(c1(z))1+ν
e

s2

2
ρ(z)(−xz(1 − z)∂ρ)−

ν
2 Jν(s

√

2xγ) , (C.23)

where

ρ(z) =
c2(z)

c1(z)
, γ = −z(1 − z)∂ρ(z) , (C.24)

and

c1(z) = F (q, 1 − p, 1, z) ,

c2(z) = [ln z + 2ψ(1) − ψ(q) − ψ(1 − p)]c1(z)

+

∞
∑

n=0

(q)n(1 − p)n
n!2

[ψ(q + n) + ψ(1 − p+ n) − 2ψ(n+ 1)]zn , (C.25)

where

(a)n ≡ Γ(a+ n)

Γ(a)
. (C.26)

Moreover

g1(z) = qz − z(1 − z)∂z ln c1 . (C.27)
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In the u-channel when p1 > p4 we have the representations Φ+
p1−p4,̂1+̂4−n with n ∈ N

for ν ≥ 0 and n = m− ν, m ≥ 0 for ν ≤ 0. The conformal blocks are

Fn(u, x) = νn
exg1(u)

(f1(u))1+ν
Lνn(xγψ(u))ψ(u)n , n ∈ N , (C.28)

where

ψ(u) =
f2(u)

f1(u)
, γψ(u) = u(1 − u)∂ lnψ , νn =

n!

(p2 − p3)n
,

g1(u) = (1 − u)p3 + u(1 − u)∂ ln f1 , (C.29)

and

f1(u) = F (p3, 1 − p1, 1 − p2 + p3, u) ,

f2(u) = up2−p3F (p2, 1 − p4, 1 + p2 − p3, u) . (C.30)

When p1 < p4, the intermediate states belong to the Φ−
p4−p1,̂1+̂4+n representation

with n = m + ν with m ≥ 0 for ν ≥ 0 and n ≥ 0 for ν ≤ 0. The conformal blocks

are very similar. Finally, when p1 = p4 = p and p2 = p3 = q the intermediate

representation is Φ0
s,̂ and the conformal blocks read

Fs(u, x) =
exg1(u)

(c1(u))1+ν
e

s2

2
ρ(u)(xu(1 − u)∂ρ)−

ν
2Jν(s

√

2xγ) , (C.31)

where

ρ(u) =
c2(u)

c1(u)
, γ = u(1 − u)∂ρ(u) , (C.32)

and

c1(u) = F (q, 1 − p, 1, u) ,

c2(u) = [ln u+ 2ψ(1) − ψ(q) − ψ(1 − p)]c1(u)

+
∞

∑

n=0

(q)n(1 − p)n
n!2

[ψ(q + n) + ψ(1 − p+ n) − 2ψ(n+ 1)]un . (C.33)

Moreover

g1(u) = (1 − q)u+ u(1 − u)∂u ln c1 . (C.34)

We will also need correlators of the form

〈Φ+
p1,̂1

(z1, z̄1, x1, x̄1)Φ
+
p2,̂2

(z2, z̄2, x2, x̄2)Φ
−
p3,̂3

(z3, z̄3, x3, x̄3)Φ
−
p4,̂4

(z4, z̄4, x4, x̄4)〉 .
(C.35)

In this case the H4 symmetry requires

p1 + p2 = p3 + p4 , (C.36)
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and gives

K(xi) = e−p3x1x3−p2x2x4−(p1−p3)x1x4(x1 − x2)
ν , (C.37)

as well as x = (x1 − x2)(x3 − x4). Proceeding as before we pass to the conformal

blocks and we set F = zλ12(1 − z)λ14F (z, x) where

λ12 = −κ12 − κ14 − (1 + ν)p2

= −h1 + h2 −
h

3
+ (1 − p1)(p1 + p2) + p1(̂3 + ̂4) − ̂1(p1 + p2) − (1 + ν)p2 ,

λ14 = κ14 = h1 + h4 −
h

3
+ p1p4 − ̂4p1 + ̂1p4 − p4 . (C.38)

We then arrive at the following form for the KZ equation

z(1 − z)∂zFn(z, x) = z
[

x∂2
x + ((p1 − p3)x+ 1 + ν) ∂x − (1 + ν)p2

]

Fn(z, x)

+ [−(p1 + p2)x∂x + xp2p3]Fn(z, x) . (C.39)

In the s-channel, the representations Φ+
p1+p2,̂1+̂2+n

with n− ν ∈ N when ν ≥ 0 and

n ∈ N when ν ≤ 0. In the first case with m = n− ν the conformal blocks are

Fm(z, x) = νm
exg1(z)

(f1(z))1+ν
Lνm(xγψ(z))ψ(z)m , m ∈ N , (C.40)

where

ψ(z) =
f2(z)

f1(z)
, γψ(z) = −(1 − z)∂ lnψ , νm =

m!

(1 − p1 − p2)m
,

g1(z) = p2 − (1 − z)∂ ln f1 , (C.41)

and

f1(z) = F (p2, p4, p1 + p2, z) ,

f2(z) = z1−p1−p2F (1 − p1, 1 − p3, 2 − p1 − p2, z) . (C.42)

When ν ≤ 0 the conformal blocks are given by the same expression except that now

n ≥ 0. Using

Lνn−ν(x) =
n!

(n− ν)!
(−x)−νL−ν

n (x) , (C.43)

and the wronskian

W (f1, f2) = (1 − c)z−c(1 − z)c−a−b−1 , (C.44)

they can be rewritten as

Fn(z, x) = zν(p1+p2)(1 − z)−ν(p1+p4)x−ννn
exg1(z)

(f1(z))1+|ν|L
|ν|
n (xγψ(z))ψ(z)n , n ∈ N .

(C.45)
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In the u-channel, when p1 > p4, we have the representations Φ+
p1−p4,̂1+̂4−n. The

conformal blocks are

Fn(z, x) = νn
exb1(z)

(a1(z))1+ν
Lνn(xγχ(z))χ(z)n , n ∈ N , (C.46)

where

χ(z) =
a2(z)

a1(z)
, γχ(z) = u∂ lnχ , νn =

n!

(p3 − p2)n
,

b1(z) = p2 + u∂ ln a1 , (C.47)

and

a1(z) = F (p2, p4, 1 + p2 − p3, u) ,

a2(z) = up3−p2F (p3, p1, 1 − p2 + p3, u) . (C.48)

Here n ≥ 0 when ν ≥ 0 and n = m − ν with m ≥ 0 when ν ≤ 0. When p1 < p4 we

have the representations Φ−
p4−p1,̂1+̂4+n with n ≥ 0 when ν ≤ 0 and n = m+ ν with

m ≥ 0 when ν ≥ 0. The conformal blocks are similar to the ones already displayed.

Finally when p1 = p4 = p and p2 = p3 = q the intermediate states belong to the

continuous representations Φ0
s,{̂1+̂4}. Let us now turn to correlators of the form

〈Φ+
p,̂1

(z1, z̄1, x1, x̄1)Φ
−
p,̂2

(z2, z̄2, x2, x̄2)Φ
0
s,̂3

(z3, z̄3, x3, x̄3)Φ
0
t,̂4

(z4, z̄4, x4, x̄4)〉 . (C.49)

In this case

K(xi) = e
−px1x2− x1√

2

(

s
x3

+ t
x4

)

− x2√
2
(sx3+tx4)

xn1−n2
3 , (C.50)

and x = x4

x3
. The conformal blocks corresponding to the propagation of Φ+

(p,̂1+̂4+n)

in the u-channel are F = uκ14(1 − u)κ12F (u, x) where

κ12 =
s2 + t2

2
− h

3
, κ14 = h1 −

h

3
− p̂4 . (C.51)

They solve the following KZ equation

∂uFn(u, x) = −1

u

(

px∂x +
stx

2

)

Fn(u, x) −
1

1 − u

st

2

(

x+
1

x

)

Fn(u, x) . (C.52)

Their explicit form is

Fn(u, x) = xnu−npe−
st
2 (xa(u)

p
+

ub(u)
x(1−p)) , (C.53)

where

a(u) = F (p, 1, 1 + p, u) , b(u) = F (1 − p, 1, 2 − p, u) . (C.54)

Similarly the blocks pertaining to Φ−
p,̂2+̂3−m are given by Fν+m. In the s-channel the

blocks for the representation Φ0
r with

r2 = s2 + t2 + 2st cosϕ , eiη =
s+ teiϕ

r
, ϕ ∈ [0, 2π) , (C.55)

are

Fr(z, x) = e−
st
2

[cosϕσ(p)−i sinϕπ cotπp]+iην
∑

n∈Z

e−inϕFn(u, x) . (C.56)
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D. Sewing constraints

In this appendix we outline with an example the main steps that are necessary

in order to verify that the structure constants given in section 5 solve the sewing

constraints. We consider the bulk-boundary couplings for the S1 branes and study

the factorization of the following bulk two-point functions: 〈Φ+
p Φ+

q 〉, 〈Φ+
p Φ−

q 〉 and

〈Φ+
p Φ0

s〉. The first correlator gives

aBs
p,̂1

aBs
q,̂2C

aaa,1
ss =

∞
∑

n=0

C
(p+q,̂1+̂2+n)
(p,̂1);(q,̂2)

aB1
p+q,̂1+̂2+nF(p+q,̂1+̂2+n),s

[

(−p,−̂1) (p, ̂1)

(−q,−̂2) (q, ̂2)

]

.

(D.1)

The second correlator gives

aBs
p,̂1

aBs
−q,̂2C

aaa,1
ss =

∞
∑

n=0

C
(p−q,̂1+̂2−n)
(p,̂1);(−q,̂2)

aB1
p−q,̂1+̂2−nF(p−q,̂1+̂2−n),s

[

(−p,−̂1) (p, ̂1)

(q,−̂2) (−q, ̂2)

]

,

(D.2)

when p > q and

aBs
p,̂1

aBs
−p,̂2C

aaa,1
ss =

∫ ∞

0
dt tC

(t,{̂1+̂2})
(p,̂1);(−p,̂2)

aB1
t,{̂1+̂2}Ft,(s,{̂1+̂2})

[

(−p,−̂1) (p, ̂1)

(p,−̂2) (−p, ̂2)

]

,

(D.3)

when p = q. Finally the third correlator gives

aBs
p,̂1

aBs
s2,̂2C

aaa,1
ss =

∞
∑

n=0

C
(p,̂1+̂2+n)
(p,̂1);(s2,̂2)

aB1
p,̂1+̂2+nF(p,̂1+̂2+n),s

[

(−p,−̂1) (p, ̂1)

(s2,−̂2) (s2, ̂2)

]

.

(D.4)

Using the bulk three-point couplings in (5.12 − 5.15) and the fusing matrices in

appendix B the previous equations become

aBs
p,̂1

aBs
q,̂2 =

√

θp,qe
s2

2
(ψ(p)+ψ(q)−2ψ(1))

∞
∑

n=0

Ln

(

θp,q
s2

2

)

aB1
p+q,̂1+̂2+n , (D.5)

aBs
p,̂1

aBs
−q,̂2 =

√

θ−p,qe
s2

2
(ψ(q)+ψ(1−p)−2ψ(1))

∞
∑

n=0

Ln

(

θ−p,q
s2

2

)

aB1
p−q,̂1+̂2−n ,

aBs
p,̂1

aBs
−p,̂2 =

π

sin πp
e

s2

2
(ψ(p)+ψ(1−p)−2ψ(1))

∫ ∞

0

dt tJ0

(

πst

sin πp

)

aB1
t,̂1+̂2 ,

aBs2
p,̂1

aBs2
s1,̂2

=
e
− iπs21 sin θ

2 tan(πp)

πs2
1 sin θ

e
s21(1−cos θ)

2
(ψ(p)+ψ(1−p)−2ψ(1))

∑

n∈Z

einθ aB1
p,̂1+̂2+n

,

where θp,q = π cotπp+ π cot πq and s2
2 = 2s2

1(1 − cos θ).

We make the following ansatz

aBs
±p,̂ =

√

π

sin πµp
e±2ipη+ s2

4
[ψ(µp)+ψ(1−µp)−2ψ(1)]bs±p,̂(u) , (D.6)
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with bs±p,̂+n(u) = einµubs±p,̂(u). The constraints then simplify

bsp,̂1(u)b
s
−q,̂2(u) = e

− iπ[cot(πµp)−cot(πµq)]s2

4 tan( µu
2 )

b1p−q,̂1+̂2(u)

1 − e−iµu
,

bsp,̂1(u)b
s
−p,̂2(u) =

∫ ∞

0

dt tJ0

(

πst

sin πp

)

aB1
t,̂1+̂2

,

bs2p,̂1(u)
aBs2

s1,̂2
=
e
− iπs21 sin θ

2 tan(πp)

πs2
1 sin θ

∑

n∈Z

einγb1p,̂1+̂2+n(u) , (D.7)

and are solved by bs±p,̂(u) = e
î u∓ iπs2

4 tan(πµp) tan(µu
2 ) .

Therefore

aBs
±p,̂ =

√

π

sin πµp

e±2ipη+îu

1 − e±iµu
e

s2

4
[ψ(µp)+ψ(1−µp)−2ψ(1)]∓ iπs2

4 tan(πµp) tan(µu
2 ) ,

aBt
s,̂ =

eîu

πs2 sin θ
2πδ(µu− θ) , t2 = 2s2(1 + cos θ) . (D.8)

Here we show some explicit examples of the relation (5.2.10) for the S1 branes

of the H4 model. We have

C
abc,(p+q,̂3)
(p,̂1)(q,̂2)

= F(−pb,̂2−̂c+n2),(p+q,̂1+̂2+k)

[

(p, ̂1) (q, ̂2)

(pa, ̂a) (−pc,−̂c)

]

,

where ̂1 = ̂ab − n1, ̂2 = ̂bc − n2, ̂3 = ̂ac − n3 and k = n1 + n2 − n3 ≥ 0. Similarly

C
abc,(p−q,̂3)
(p,̂1)(−q,̂2) = F(−pb,̂2−̂c−n2),(p−q,̂1+̂2−k)

[

(p, ̂1) (−q, ̂2)

(pa, ̂a) (−pc,−̂c)

]

, p > q ,

where ̂1 = ̂ab − n1, ̂2 = ̂bc + n2, ̂3 = ̂ac − n3 and k = n3 + n2 − n1 ≥ 0. We also

have

C
abc,(−(q−p),̂3)
(p,̂1)(−q,̂2) = F(−pb,̂2−̂c−n2),(p−q,̂1+̂2+k)

[

(p, ̂1) (−q, ̂2)

(pa, ̂a) (−pc,−̂c)

]

, p < q ,

where ̂1 = ̂ab − n1, ̂2 = ̂bc + n2, ̂3 = ̂ac + n3 and k = n3 + n1 − n2 ≥ 0.

E. Penrose limit of the SU(2) and SL(2,R) branes

In this appendix we discuss the Penrose limit of the symmetric branes in S3 and

in AdS3 using coordinate systems adapted to their world-volume. For S3 we use

spherical coordinates

ds2 = k
[

−dt2 + dψ2 + sin2 ψ(dθ2 + sin2 θdϕ2)
]

, Hψθϕ = 2k sin2 ψ sin θ . (E.1)

The symmetric branes sit at ψn = πn/k. The integer n, 0 < n < k, parameterizes

a uniform world-volume flux F = −n/2 sin θ, which stabilizes the brane [70]. When
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n = 0 or n = k, the brane world-volume degenerates to a point. In order to describe

the S1 branes we make the following change of variables

t =
µx+

2
+
x−

µk
, ψ =

µx+

2
− x−

µk
, θ =

ρ√
k
. (E.2)

This leads in the limit k → ∞ to the Nappi-Witten wave in Rosen coordinates. We

can easily see that the flux on the brane world-volume becomes

F ≡ B + 2πF = −1

2
sin x+ρdρ ∧ dϕ , (E.3)

as expected. Moreover we can exploit the relation between the brane location ψ and

the spin of the SU(2) representations

ψj =
π(2j + 1)

k + 2
, j = 0, ...,

k

2
, (E.4)

to derive an analogous relation between the labels of the H4 conjugacy classes (u, η)

and the quantum numbers of the H4 representations. If we scale the spin of SU(2)

in such a way as to obtain a discrete representation V±p,̂ [35]

j =
k

2
p∓ ̂ , p > 0 , (E.5)

we obtain

µu = ±2π(µp+ n) , 2η = π(2̂± 2p∓ 1) . (E.6)

For the D2 we set

t =
µu

2
, ϕ =

µu

2
− 2v

µk
, ψ =

χ√
k

+
π

2
, θ =

ξ√
k

+
π

2
, (E.7)

and take the limit k → ∞, which leads to the Nappi-Witten wave in Brinkman

coordinates. In this case we focus on S2 branes very close to the equator of S3 and

scale the SU(2) spin as

j =
k

4
+
√
k
χ

2π
. (E.8)

As expected, the twisted-branes are in one-to-one correspondence with the repre-

sentations invariant under the action of the external automorphism Ω, V 0
s,0 and V 0

s, 1
2

.

Note that in the first case, the null geodesic used to take the limit intersects the brane

world-volume while in the second case it is contained within the brane world-volume.

The limit of the AdS2 branes is better described using the following coordinate

system for AdS3 × S1

ds2 = kdψ2 + k cosh2 ψ
(

dω2 − cosh2 ωdτ 2
)

+ kdx2 , Hψωτ = 2k cosh2 ψ coshω .

(E.9)
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The AdS2 branes are surfaces with constant ψ and a world-volume flux Fωτ =

−kψ
2π

coshω. The Penrose limit is

τ =
µu

2
+

2v

µk
, x =

µu

2
, ψ =

χ√
k
, ω =

ξ√
k
, (E.10)

with k → ∞. In the process, the AdS2 brane at constant ψ (with Neumann boundary

condition along S1) becomes the D2 brane at constant χ, with a null world-volume

flux Fuξ = µχ
2

, as expected. Similarly, the limit of the H2 branes is more easily

described if we use hyperbolic coordinates for AdS3 writing

ds2 = −kdτ̃ 2 + k sin2 τ̃(dλ2 + sinh2 λdφ2) + kdx2 , Hτ̃φλ = 2k sin2 τ̃ sinhλ ,

(E.11)

with τ̃ ∈ [−π, π], λ ≥ 0. The H2 branes are surfaces with constant τ̃ and a world-

volume flux Fφλ = −kτ̃
2π

sinhλ. In the limit k → ∞ the change of coordinates

τ̃ =
µx+

2
, x =

µx+

2
− 2x−

µk
, λ =

ρ√
k
, φ = −ϕ , (E.12)

leads to the Nappi-Witten wave in Rosen coordinates (here ρ2 = y2
1 + y2

2). The H2

branes with Dirichlet boundary conditions along S1 become the S1 branes with the

flux given in (2.13).

F. The DBI approach

In this appendix we will study the more general class of rotationally invariant so-

lutions found in section 8. We consider B 6= 0. It is convenient to distinguish the

following cases:

(I) |B + E| < 2. In this case the brane embedding can be written as

u =
|B|

√

4 − (B + E)2
log

[

r +

√

r2 +
4AB

4 − (B + E)2

]

+ u0 (F.1)

v = v0 + 2A
4 − BE − E2

(4 − (B + E)2)
3
2

log

[

r +

√

r2 +
4AB

4 − (B + E)2

]

− (F.2)

− B + E

2
√

4 − (B + E)2
r

√

r2 +
4AB

4 − (B + E)2

(II) |B + E| = 2. Here the embedding simplifies to

u =

√

B

4A
r + u0 (F.3)
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v = v0 +

√

B

A

3Ar ± r3

3B
(F.4)

(III) |B + E| > 2. In this cases we obtain a trigonometric embedding

u = u0 +
|B|

√

(B + E)2 − 4
arcsin

[

r
√

(B + E)2 − 4√
4AB

]

(F.5)

v = v0 −
|B|

2
√

(B + E)2 − 4
r

√

−r2 +
4AB

(B + E)2 − 4
+ (F.6)

+
2A(E2 +BE − 4)

((B + E)2 − 4)
3
2

arcsin

[

r
√

(B + E)2 − 4√
4AB

]

Solving for r and substituting we obtain that the points on the brane are on the

curve

[(B + E)2 − 4](v − v0) − 2A
E2 +BE − 4

√

(B + E)2 − 4
(u− u0) = (F.7)

= −1

2

√

|AB3| sin

[

√

(B + E)2 − 4
2(u− u0)

|B|

]

Using the embedding equations (8.1.9,8.1.10) we can calculate the induced metric

as

dŝ2 =
4 −E2

B2
r2u′2dr2 + r2dθ2 = r2

[

4 −E2

B2
du2 + dθ2

]

(F.8)

while the antisymmetric tensor is Brθ = 2ur. The induced two-dimensional curvature

is

R ∼ u′ + ru′′ (F.9)

The induced metric is flat when A = 0, when the solution is

u =
|B|

√

4 − (B + E)2
log r + u0 , v = v0 −

B + E

2
√

4 − (B + E)2
r2 (F.10)

Our symmetric branes are a special case of the flat branes with B = 0.

The open string metric is the induced metric rescaled by (detg + B)/detg. We

find

ds2
open =

4B2u2 + (4 − E2)r2u′2

(4 − E2)r2u′2

[

4 − E2

B2
r2u′2dr2 + r2dθ2

]

(F.11)

=

(

r2 +
4B2u2

(4 − E2)u′2

) [

4 −E2

B2
du2 + dθ2

]

For the symmetric branes this is again flat.
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The critical electric field case E = ±2 is a bit special and we will discuss it here,

separately. The gauge field equation implies in this case

r2u′2 + 2u′v′ = 1 (F.12)

while the others

2r2u′ = B|2ur + F | , r2u′ + v′ =

(

∓1 +
A

r2

)

|2ur + F | (F.13)

The previous equations can be massaged into

u′ =

√

B

4A

1
√

1 − B±4
4A

r2

⇒ r = R sin

[
√

B ± 4

B
(u− u0)

]

(F.14)

v = v0 +
R

√

B(B ± 4)

[

B ± 2

2
r

√

1 − r2

R2
± R arcsin

r

R

]

(F.15)

This class of solutions describes an embedding with a compact support 0 < r < R

with R =
√

4A
B±4

. The induced metric here is degenerate

dŝ2 = r2dθ2 (F.16)

These are the null branes mentioned (but not analyzed in detail) in the main

body of this paper.

F.1 S1 fluctuations

Expanding around the classical solution u∗,v∗, F∗ satisfying (8.1.8)-(8.1.10)

u→ u∗ + u , v → v∗ + v , F → F∗ + F (F.17)

we obtain to quadratic order

L = L∗ + L2 + O(u3, v3, F 3) (F.18)

L2 =
1

2L3
∗

[

(1 − 2u′∗v
′
∗ − r2u′2∗ )r2(2ur + F )2+ (F.19)

+2r2(2u∗r+F∗)[(v
′
∗+r2u′∗)u

′+u′∗v
′](2ur+F )−L2

∗[u
′2
∗ v̇

2+(r2+v′2∗ )u̇2+2(1−u′∗v′∗)u̇v̇]
−r4u′2∗ v

′2 − r4[r2 + v′2∗ + (2u∗r + F∗)
2]u′2 − 2r2[(2u∗r + F∗)

2 + r2(1 − u′∗v
′
∗)]

]

u′v′

From equations (8.1.8)-(8.1.10)

L∗ =
2

|B|r
2u′∗ , 1 − 2u′∗v

′
∗ − r2u′2∗ =

4 − E2

B2
r2u′2∗ , (2u∗r + F∗)

2 =
E2

B2
r2u′2∗

(F.20)
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follow and we can rewrite L2 as

L2 =
(4 − E2)

√

4AB + (4 − (B + E)2)r2

16r2

(

F + 2ur +
E[(2A− Er2)u′ +Bv′]

4 − E2

)2

−
(F.21)

−4(A2 − AEr2 + r4)u̇2 +B2v̇2 + 2(2AB − [(E(B + E) − 4]r2)u̇v̇

4r2
√

4AB + (4 − (B + E)2)r2

−
√

4AB + (4 − (B + E)2)r2 ×

×4(A2 − AEr2 + r4)u′2 +B2v′2 + 2(2AB − [(E(B + E) − 4]r2)u′v′

4(4 − E2)r2

Specializing to the symmetric solutions A = B = 0

u∗ = const. , v∗ → v0 −
Er2

2
√

4 − E2
, L∗ =

2r√
4 − E2

, 2u∗r + F∗ =
Er√

4 − E2

(F.22)

we obtain.

L2 =

√
4 −E2

16r

[

−(4 − E2)(2ur + F )2 + 2E2r2u′(2ur + F ) +
16r2

4 −E2
u̇2 + 8u̇v̇+

(F.23)

+(4 + E2)r4u′2 + 8r2u′v′
]

We redefine

V = v +
2r2

4 − E2
u , Aθ → Aθ +

E2r2u

4 −E2
(F.24)

and rewrite the action (after performing an integration by parts) as

L2 =

√
4 −E2

16r

[

−(4 −E2)

(

F +
8ur

4 − E2

)2

+ 8(u̇V̇ + r2u′V ′) + 32
r2u2

4 −E2

]

(F.25)

It is obvious from the Lagrangian above that u satisfies the flat two-dimensional

Laplace equation.

2u = 0 ⇒ 1

r
(ru′)′ +

1

r2
ü = 0 (F.26)

The solution to the equation for the gauge fluctuation is

F + 2ur − E2

4 −E2
r2u′ =

2C

(4 −E2)
r (F.27)

with C a constant.

Finally the u equation reads

2V =
1

r
(rV ′)′ +

1

r2
V̈ = − 4

4 −E2
(2u+ C) (F.28)
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Thus the V field is a free field subject to a source linear in u and C.

The regular solution of (F.26) is u = u0 constant. On the other hand in order

that (F.28) has a regular solution we must have C = −2u0 and then V = V0 constant.

In the critical case , we take E → 2 and rescale F → F/
√

4 − E2, (u, v) →
(u, v)

√
4 − E2 to obtain

S2(E = 2) =

√

4AB + (4 − B2)r2

16r2

(

F + 2ur + 2[2(A− r2)u′ +Bv′]
)2 − (F.29)

−
√

4AB + (4 − B2)r2

4r2

[

2(A− r2)u′ +Bv′
]2

This system is degenerate. The solution to its equation of motion is

F + 2ur = − 4Cr2

√

4AB + (4 − B2)r2
, 2(A− r2)u′ +Bv′ =

10Cr2

√

4AB + (4 −B2)r2

(F.30)

G. Bulk one-point couplings from the DBI action

We can compute the coupling to the bulk metric from

Sµν ≡ δSDBI
δGµν

(G.1)

Sµν =
1

4

√

− det(Ĝ+ B̂ + F )

[

(

Ĝ+ B̂ + F
)αβ

+
(

Ĝ− B̂ − F
)αβ

]

∂αx
µ∂βx

ν

(G.2)

For the D2-branes at y = y0 we obtain the following coupling

Suv = − 1

2
√

1 − f 2
uv

, Svv =
−f 2

ux + x2 + 2y0fux

2
√

1 − f 2
uv

(G.3)

Svx =
fuv(fux − y0)

2
√

1 − f 2
uv

, Sxx =

√

1 − f 2
uv

2

all others being zero. In summary,

S =

















0 − 1

2
√

1−f2
uv

0 0

− 1

2
√

1−f2
uv

−f2
ux+x2+2y0fux

2
√

1−f2
uv

fuv(fux−y0)
2
√

1−f2
uv

0

0 fuv(fux−y0)
2
√

1−f2
uv

√
1−f2

uv

2
0

0 0 0 0

















(G.4)
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At the symmetric point

S =
1

2











0 −1 0 0

−1 x2 0 0

0 0 1 0

0 0 0 0











(G.5)

For the D1 branes

SµνD1 =
B

4u′
r2∂rx

µ∂rx
ν +

4 −E2

4B
u′∂θx

µ∂θx
ν (G.6)

For the symmetric configurations we obtain

SvvD1 =
E2r3

4
√

4 −E2
, SvrD1 = −E

4
r2 , SrrD1 =

√
4 −E2

r

4
, SθθD1 =

√
4 − E2

4r
(G.7)

The coupling to the antisymmetric tensor is given by

Aµν ≡ δSDBI
δBµν

(G.8)

Aµν =
1

4

√

− det(Ĝ+ B̂ + F )

[

(

Ĝ+ B̂ + F
)αβ

−
(

Ĝ− B̂ − F
)αβ

]

∂αx
µ∂βx

ν

(G.9)

By direct calculation for the D1 case we obtain that the only non-zero components

are

Aθu =
E

4
u′ , Aθv =

E

4
v′ , Aθr =

E

4
(G.10)

For the particular case of symmetric D1 branes we have

Aθu = 0 , Aθv = − E2r

4
√

4 −E2
, Aθr =

E

4
(G.11)

For the D2 branes we obtain

A =
1

2















0 fuv√
1−f2

uv

0 0

− fuv√
1−f2

uv

0 fux−y0√
1−f2

uv

0

0 − fux−y0√
1−f2

uv

0 0

0 0 0 0















=⇒
limf→0

1

2











0 0 0 0

0 0 −y0 0

0 y0 0 0

0 0 0 0











(G.12)

The one-point coupling to the dilaton is given by

F ≡ δSDBI
δΦ

= −
√

− det(Ĝ+ B̂ + F ) (G.13)

We obtain

FD1 = −2r2u′

B
= − 2r2

√

(4 − (B + E)2)r2 + 4AB

=⇒
symmetric

− 2r√
4 − E2

(G.14)

FD2 = −
√

1 − f 2
uv

=⇒
symmetric

− 1 (G.15)
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H. Some useful series and integrals

∞
∑

n=0

Lαn(x)z
n =

e
xz

z−1

(1 − z)1+α
. (H.1)

∞
∑

n=0

zn

Γ(n + α + 1)
Lαn(x) = ez(xz)−

α
2 Jα(2

√
xz) . (H.2)

∫ ∞

0

dxe−βx
2

xν+1Lνn(αx
2)Jν(xy) = 2−ν−1β−ν−n−1(β − α)nyνe−

y2

4βLνn

[

αy2

4β(α− β)

]

.

(H.3)

∫ ∞

0

dxe−xxαLαn(x)L
α
m(x) = δn,m

Γ(α + n + 1)

n!
, (H.4)

∫ ∞

0

dxxJm(sx)Jm(tx) =
δ(s− t)

s
, (H.5)

∫ ∞

0

dxe−σxxαLαn(λx)L
α
m(µx) =

Γ(m+n+α+1)

m! n!

(σ−λ)n(σ−µ)m

σn+m+α+1
F (−m,−n,−m−n−α, τ) ,

(H.6)

where

τ =
σ(σ − λ− µ)

(σ − λ)(σ − µ)
. (H.7)

∫ ∞

0

dxxν+1e−αx
2

Lν−σm (αx2)Lσn(αx
2)Jν(xy)

= (−1)m+n(2α)−ν−1yνe−
y2

4αLσ−m+n
m

(

y2

4α

)

Lν−σ+m−n
n

(

y2

4α

)

. (H.8)

∫ ∞

0

xν+1e−βx
2
[

L
ν
2
n (αx2)

]2

Jν(xy)dx =
yν

πn!
Γ(n + 1 + ν/2)

e−
y2

4β

(2β)ν+1

n
∑

l=0

(−1)lΓ(n− l + 1/2)Γ(l + 1/2)

Γ(l + 1 + ν/2)(n− l)!

(

2α− β

β

)2l

Lν2l

[

αy2

2β(2α− β)

]

. (H.9)

∞
∑

n=0

n!
Lαn(x)L

α
n(y)z

n

Γ(n + α+ 1)
=

(xyz)−
α
2

1 − z
e−

z(x+y)
1−z Iα

(

2
√
xyz

1 − z

)

. (H.10)

∞
∑

j=0

cj−l1 Lj−ll (b1c1)c
l+n−j
2 Ll+n−jj (b2c2) = e−c1b2(c1+c2)

nLnl [(b1 + b2)(c1 + c2)] . (H.11)
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∫ ∞

0

drre−a
r2

2

[

r2

2

]q−s−m+n

Lq−mm

(

ar2

2

)

Ln−ss

(

br2

2

)

Lq+n−m−s
m+k−n

(

(a− b)r2

2

)

(−1)s+n−k

=
(k + q)!(k +m)!

m!s!k!(k +m− n)!

(a− b)n−k−mbs

ak+q+1
F

(

−k.− s,−q − k,
a

b

)

× (H.12)

×F
(

−k,−m− k + n,−m− k,
a

a− b

)

.

∫ ∞

−∞
du e

−u2

2
+

iu(q1−q2)√
2

[

u+
i(q1 + q2)√

2

]n−m
Ln−mm

[

u2 +
(q1 + q2)

2

2

]

=
√
πin+m e

− (q1−q2)2

4

2
m+n−1

2 m!
Hn(q1)Hm(q2) . (H.13)

∫ ∞

0

Jν(ax)e
ibxdx =

eiν sin−1 b
a

√
a2 − b2

, a > b . (H.14)

∫ ∞

0

e−αx
2

Jν(βx)dx =
1

2

√

π

α
e−

β2

8α Iν/2

(

β2

8α

)

,Re(α) > 0, β > 0,Re(ν) > −1 .

(H.15)

∫ ∞

0

ds cos(bs)J0(as) =
1√

a2 − b2
, a > b . (H.16)

∫ ∞

0

x dxe−a x2

J0(xy) =
1

2a
e−

y2

4a (H.17)

76



References
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